AD-R152 989 SPECIFICATION OF SOFTWARE QUALITY ATTRIBUTES VOLUME 2

SOFTWARE QUALITY SP. . (U> BOOING REROSPACE CO SERTTLE WA
T P BOWEN ET AL. FEB 85 D182-14678-2
UNCLASSIFIED RADC-TR-85-37-YOL-2 F30682-82-C-8137 F/G 972

s B28 W25
llL8 & & &
—— i 2.2
=ik
[3

.0
|||| T "
— ul,8
lL2s flie, mig

= =
MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

~

T~

el

-,

e)

— rngem

~
o T ppen—

‘ﬂa~.-.- -

R *-‘a r_\\p x'f. -.,

4(}{{{\{1 m. \.

1_\ .3(1

.;. AP Al P Sl M P PR Al el wa -\"f'- PSR TR e N A gl gis "R >R iaivn e MR Aduging A Ga WR Ay eiil, Gnib el Saib et it sl At & 'f- T R e e % i Te vl T T e e
s -

¢

=4 This report has been reviewed by the RADC Public Affairs Office (PA) and

L is releasable to the National Technical Information Service (NTIS). At NTIS

it will be releasable to the general public, including foreign nations.

RADC-TR-85-37, Volume II (of three) has been reviewed snd is approved
for publication.

APPROVED: ﬁﬂ« /g 7%@4/

ROGER B. PANARA
Project Engineer

et AR ol SRR b
., |) ' 4.':"!“ ""
, - : o L

.._...rn. o~ e .-
i E .

5 / 5
B APPROVED: égm«(p MAL
- | RAYMOND P, URTZ, JR. :

Technical Director
Command & Ccntrol Division

it S AR

PORSINEN O WO

[

- o

-

FOR THE COMMANDER: _

DONALD A. BRANTINGHAM
Plans Office

.

If your address has changed or if you wish to be removed from the RADC _
mailing 1ist, or if the addressee is no longer employed by your organizationm, Co.

.x please notify RADC (COEE) Griffiss AFB NY 13441-5700. This will assist us in L
maintaining a current mailing 1list. -
Do not return copies of this report unless contractual obligations or notices f;

on a specific document requires that it be returned. .

PGP P L TR

—_

i
PR §

AN B A AL R R UL G £ LK & N PN g) A

L R R AT Y LR L Iy TR T TN T TR T W

ay

ks

pRSRY
e
A
UNCLASSIFIED LY
SECURITY CLASSIFICATION OF THIS PAGE L\t. -.:
REPORT DOCUMENTATION PAGE
1s. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS) .’]
UNCLASSIFIED N/A -f‘ 1
20. SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILABILITY OF REPORT »}"Jjbn
N/A Approved for public release; distribution Y
2. DECLASSIFICATION/OOWNGRADING SCHEDULE unlimited.
N/A

s PERFORMING ORGANIZATION REPORT NUMBER(S)
182-11678-2

5. MONITORING ORGANIZATION REPORT NUMBER(S)
RADC-TR-85~37, Vol II (of three)

6s. NAME OF PERFORMING ORGANIZATION b. OF FICE SYMBOL
(1f applicable)
Boeing Aerospace Company

7s. NAME OF MONITORING ORGANIZATION
Rome Air Development Center (COEE)

6c. ADORESS (City, State and ZIP Code)
P.0. Box 3999

7b. ADORESS (City, State cnd ZIP Code;
Griffiss AFB NY 13441-5700

Seattle WA 98124

8e. NAME OF FUNDING/SPONSORING 8. OFFICE SYMBOL |9. PROCUREMENT INSTAUMENT IDENTIFICATION NUMBER
ORGANIZATION {11 applicedle)
Rome Air Development Center COEE F30602-82~C-0137
8. ADORESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.
e PROGRAM PROJECT TASK WORK UNIT
Griffiss AFB NY 13441-5700 ELEMENT NO. NO. NO. NO.
63728F 2527 03 05

11. TITLE (Inciude Security Classtfication}
SPECIFICATION OF SOFTWARE QUALITY ATTRIBUTES Software Quality Specification Guidebook
12. PERSONAL AUTHOR(S)
Thomas P. Bowen, Gary B. Wigle, Jay T. Tsai
13a TYPE OF REPORT 13b. TIME COVERED

14. DATE OF REPORAT (Yr., Mo., Day) 15. PAGE COUNT

Final FROM Aug 82 toQct 84 February 1985 156
16. SUPPLEMENTARY NOTATION
N/A
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by dlock number)
FIELD GROUP SUB. GR. Software Quality
09 02 Software Quality Metrics

19. ABSTRACT (Continue on reverse if necemary and identify by block number)

Volume I (of three) describes the results and presents recommendations for integrating the
RADC developed software quality metrics technology into the Air Force software acquisition
management process and for changing Air Force acquisition documentation. In addition,
changes to the baseline software quality framework are presented and features of a proposed
specification methodology are summarized. Terminology and life cycle phases are consistent
with the December 1983 draft of the DOD-STD-SDS, Defense System Software Development.

Volume II (of three) describes how the software acquisition manager specifies software
quality requirements, consistent with needs. Factor interrelationships, tradeoff among
factor quality levels in terms of relative costs and an example for a command and control
application are described. Procedures for assessing compliance with the specified require-
ments based on an analysis of data collected using procedures described in Volume III are
included.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

'y

21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

220 TELEPHONE NUMBER 22¢. QFFICE SYMBOL
{Inciude Ares Code) .

(315) 330-4654 RADC ¢(COEE

EDITION OF 1 JAN 7318 OBSOLETE. UNCLAS ED
SECURITY CLASSIFICATION OF THIS PAGE

IARAN

UNCLASSIFIED/UNLIMITED [0 same as ret. (B oTic users O

v
-

22a. NAME OF RESPONSIBLE INDIVIDUAL

X 174

.

“
IS
Malala

Roger B. Panara
DD FORM 1473, 83 APR

0
.
Py
.
P
)
-
[

L R S S

N e .'t O *-'.‘-‘.\w‘ . P W YL IS
-~ . A RS ".'_',5\ A NEENEN

Ln N R, _

ﬁ-)_‘ AR I LN Y N

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Volume III (of three) describes procedures and techniques for evaluating achieved quality
levels. Worksheets for use in metric data collection by software life cycle phases and
scoresheets for scoring each factor are provided.

DTIC

M ELECTE

g MAY2 21885

B

Accession For

NTIS GrA&I
DTIC TAB

Unananeunced
Justiiication]

DDR
N

Hv . _
Niat-idbution/
. Sorm
Av-:11ability Codes
gAvail and/or
Dist 1 Spseial

p—

W TN R T R PR R PR R R PR T N AR T M T Tl T i T P Ca d W K g L C T gy T

e
UNCLASSIFIED

SECURMITY CLASSIFICATION OF THIg PAGE

O A

ry !
el

PRl

YU A
*)‘l.. «

o
oo

A %

., -
S

ol P

)

RHRER

4 |

T T,
.'4'-;1":" (SRS
‘n.- e » A > B

o

Lot gm0 2 ave ¥
PP

Vol

S
ot Jaty

B A
A O

\/

PREFACE

)

f,AOO#)’for the Specification of Software Quality Attributes contract, F30602-82-C-
0137. Contract work was performed by Boeing Aerospace Company (ﬂAC) for Rome
Air Development Center (RADC) to provide methods, ggghniquéé; and guidance to Air
Force software acquisition mgggge:s—whd‘?ﬁeﬁf}: /the requirements for software
quality, —————""""

The purpose of this contract was to (1) consolidate results of previous RADC contracts
dealing with software quality measurement, (2) enhance the software quality
framework, and (3) develop a methodology to enable a software acquisition manager to
determine and specify softwar,e c!ualioty faitor requirements. We developed the
methodology and framework eléfﬁ;hthfébfc:cus on an Air Force software acquisition
manager specifying quality requirements for embedded software that is part of a
command and control application. This methodology and most of the framework
elements are generally useful for other applications and different environments. ~

e T ——

The Final Technical Report consists yhf’éé’;olumes:

a. Volume I, Specification of Software Quality Attributes—Final Report.

b. Volume II, Speqiﬁcati(’); of Software Quality Attributes—Software Quality
Specification Guidebook.

c. Vol(irhé I, Specification of Software Quality Attributes—Software Quality
Evaluation Guidebook.

Volume I describes the results of research efforts conducted under this contract,
including recommendations for integrating quality metrics technology into the Air
Force software acquisition management process, recommended changes to Air Force
software acquisition documentation, and summaries of software quality framework
changes and specification methodology features.

" Volumes I and IIl describe the methodology for using the quality metrics technology

and include an overview of the software acquisition process using this technology and
the quality framework. Volume Il describes methods for specifying software quality

requirements and addresses the needs of the software acquisition manager. Volume Iil

- . e .- -] T T e o . CIRNCI S S L
T T A T T S Y T T T T TR L T AT T,
.- "t RSN . A N . " B d s ..;:‘.:r\v:...:'\

SN SINEY
fedalan e

’ This document is the second of three volumes of the Final Technical Report (CDRL—Q-/’

By
2y k

v,

Y.

P

e
e A,

, W N X
1]
A)
v 0 S 7l E.l' ol

PATA
s Te Yy
v e
.

i

AT ML T
. 1 t
. . . F_ 2
R ()
. «'a
o

e
" 1 a_
BRI
- Ay &

& &

=

DL

2
LI

i,-ol

AL
.‘A'-Ar“) et

.

O

CESSS
. D0 o R RV W

N

R Al a2 e o WL CRaM 7 B T IS TV T I I NI EeEY 2 i o

describes methods for evaluating achieved quality levels of software products and
addresses the needs of data collection and analysis personnel.

Volume II also describes procedures and techniques for specifying software quality
requirements in terms of quality factors and criteria. Factor interrelationships,
relative costs to develop high quality levels, and an example for a command and
control application are also described. Procedures for assessing compliance with
specified requirements are included. <_---_.__

Volume IIl also describes procedures and techniques for evaluating achieved quality
levels of software products. Worksheets for collecting metric data by software life-
cycle phase and scoresheets for scoring each factor are provided in the appendixes.
Detailed metric questions on worksheets are nearly identical to questions in the
Software Evaluation Reports proposed as part of the Software Technology for
Adaptable Reliable Systems (STARS) Measurement data item descriptions (DID).

Terminology and lifecycle phases used in the guidebooks are consistent with the
December 1983 draft of the Department of Defense software development standard
(DOD-STD-SDS) (e.g., the term computer software configuration item (CSCI) is used
rather than computer program configuration item (CPCI)).

~ij-

"
.
wfale
AN

P e
IR
Ay

2 AR

CONTENTS
Page X
N
1.0 INTRODUCTION 1-1 g
1.1 Background 1-1 v
1.2 Purpose 1-2 :.:
1.3 Scope 1-2 -
1.4 Use of the Guidebooks 1-3 :;}P{
2,0 ROLE OF QUALITY METRICS IN THE SOFTWARE 2-1 "
ACQUISITION PROCESS g
2.1 Software Acquisition Process 2-1 -
2.1.1 System Acquisition Life Cycle 2-1 t
2.1,2 Software Development Cycle 2-3
2.1.3 Life-Cycle Relationships 2-5
2.1.4 Software Acquisition Management 2-7
2.1.5 Verification and Validation 2-8
2.1.6 Quality Assurance 2-9
2.2 Quality Metrics 2-11
2.2.1 Framework 2-15
2.2.2 Quality Specification 2-21
2.2.3 Quality Monitoring 2-23
2.3 Software Acquisition Using Quality Metrics 2-25
2.4 Potential Benefits and Problems 2-33
2.4.1 Benefits 2-33
2.4.2 Problems 2-34
3.0 QUALITY METRICS FRAMEWORK 3.1
3.1 Software Quality Factors 3-3
3.1.1 Factor Definitions and Rating Formulas 3-3
T 3.1.2 Quality Factor Interrelationships 3.9
E 3.2 Software Quality Criteria 3-11
::(_-Ij:;f 3.3 Software Quality Metrics 3-11
5%
o
;;Z -iii-
N AL RN, I:'=§.';3:§:2’f¥:1.";:'«'.3:3‘:1'-“}1-:.’ SRR R

‘s hg{:}at }.“r .‘r'{"\"-/sv’ "("‘V-‘;x\\.{\}-t 2\‘

AKX Al

3.4 Metric Worksheets
3.5 Factor Scoresheets

4.0 SOFTWARE QUALITY SPECIFICATION METHODOLOGY
4.1 Select and Specify Quality Factors

4.1.1 Identify Functions (Step 1)

4.1.2 Assign Quality Factors and Goals (Step 2)
4.1.2.1 Command and Control Quality Concerns
4.1.2.2 System Quality Factors
4.1.2.3 Quality Requirements Survey
4.1.2.4 Complementary Quality Factors
4.1.2.5 Quality Goals Assignment

4.1.3 Consider Interrelationships (Step 3)
4.1.3.1 Shared Criteria
4.1.3.2 Beneficial and Adverse Relationships
4.1.3.3 Quantification of Relationships
4.1.3.4 Review of Quality Goals

4.1.4 Consider Costs (Step %)
4.1.4.1 Life-Cycle Quality Costs and Benefits
4.1.4.2 Cost Variation Estimates
4.1.4.3 Cost Effects of Factor Interrelationships
4.1.4.4 Review of Quality Goals

4.2 Select and Specify Quality Criteria
4.2.1 Select Criteria (Step)
4.2.2 Assign Weighting Formulas (Step 2)
4.2.3 Consider Interrelationships (Step 3)
4.3 Select and Qualify Quality Metrics

4.3.1 Identify Metrics (Step

4.3.2 Select and Qualify Metric Elements (Step 2)
4.4 Assess Compliance with Requirements

APl RAP SN, oW apes e g i

A
s,
g

s
‘h

4.4.1 Review Requirements Allocations and Evaluation Formulas
4.4.2 Review Factor Scores
4.4.3 Review Criteria Scores

4.4.4 Review Metric Scores

-iV =

AN NS A PR
AN S S

o
-
v

P S W TR DAL TRRN

[N ".n L : 2

Page

3-15
3-17

4-1
4-7

4-9

4-11
4-11
4-11
4-19
4-19
4-21
4-23
4-25
4-25
4-27
4-35
4-39
4-39
4-49
4-51
4-61
4-63
4-63
4-63
4-65
4-67
4-67
4-68
4-69
4-69
4-70
4-71
4-72

TeT Rt ataw
L e »
DS) Ay

~ "t"." »)

-v-

s
l'“_ : I-
NS

P 1%

feta?
- &
<N

+

Appendix C—Software Quality Evaluation Report
Y

Appendix A—Metric Worksheets
Appendix B—Factor Scoresheets

S TP T AT S RIAATIT e e R A Yo Ko e T LI - TEAR TN

-y
> g’-
-
<
-
»
»
]
)
[

: "3
[{3
;> FIGURES
2
»3 Page
E‘ 1.4-1 Software Quality Measurement Methodology 1-4
e 2.1-1 System Acquisition Life-Cycle Phases and Decision Points 2-2
ol 2.1-2 Software Development Cycle 2-4
ey 2.1-3 Life-Cycle Relationship between the System and the 2-6
N Operational Software
2.1-4 Relationship of Software Development and V&V 2-10
Y 2.1-5 Software QA Function 2-12
oy 2,2-1 Quality Metrics Technology —Life-Cycle Model 2-14
> 2.2-2 Software Quality Model 2-16
:. 2.2-3 Performance Factor Attributes 2-18
2.2-4 Design Factor Attributes 2-19
2.2-5 Adaptation Factor Attributes 2-20
¢:J 2.3-1 Software Acquisition Quality Metrics Functions 2-24
'.'-‘-J 2.3-2 Air Force Acquisition Relationships Involved in 2-26
::2'- Quality Metrics Functions
- 2.3-3 Recommended Responsibilities and Relationships for the QM 2-28
T Specification Function
::\: 2.3-4 Recommended Responsibilities and Relationships for the QM 2-30
hhy Monitoring Function
g _ 2.3-5 Relationship between Product Divisions and DACS 2-32
o~ 3.1-1 Rating Estimation and Rating Assessment Windows 3-4
i:- 4.0-1 Software Quality Specification and Evaluation Process 4-2
,Q 4.0-2 Flow of Software Quality Requirements 4-4
oo 4.0-3 Procedures for Specifying Software Quality Requirements 4-6 .
% 1 4.0-4 Procedures for Assessing Compliance with Requirements 4-8 ;
Y 4.1.4-1 Quality Factor Life-Cycle Cost Ranges 4-40 i
L 4.1.4-2 Cost Effects of Positive Factor Interrelationships 4-52 E A
E::-;_—q 4.1.4-3 Cost Effects of Negative Factor Interrelationships 4-56 ij
o E:ﬂ:
v N
.-,’i $1
]
2
v s
X

- -) .
AR T

[N

o » .l-‘.
iR S.{s DR

2.2-2
2.3-1
3.1-1
3.1-2
3.2-1
3.2-2
3.3-1
3.4-1
3.4-2
4.1.1-1
4.1.2-1
4.1.2-2

4.1.2-3
4.1.2-4
4.1.2-5
4.1.2-6
4.1.2-7
4.1.3-1
4.1.3-2
4.1.3-3
4.1.3-4
4.1.3-5
4.1.4-1
4.1.4-2
4.1.4-3
4.1.4-4
4.2-1

4.2-2

Quality Concerns
Software Quality Factor Interrelationships

Organizational Evaluation

Software Quality Factor Definitions and Rating Formulas
Quality Factor Ratings

Software Quality Factors and Criteria

Quality Criteria Definitions

Quality Metrics Summary

Metric Worksheet/Life-Cycle Correlation

Software Development Products

Characteristics and Functions for Example System
Important S/W Quality Factors for Major C2 Applications
Examples of Application/Environment Characteristics and
Related Software Quality Factors

System/Software Quality Factor Correlation

Software Quality Requirements Survey

Software Quality Factor Identification Form—Survey Results
Complementary Software Quality Factors

Software Quality Factor Identification Form—Initial Goals
Effects of Criteria on Software Quality Factors

Positive Factor Interrelationships

Negative Factor Interrelationships

Factor Interrelationship Calculations

Software Quality Factor Identification Form—Revised Goals
Life Cycle Quality Costs/Benefits

Cost Variations Calculation Form—Initial Estimate

Cost Variations Calculation Form—Refined Estimate
Software Quality Factor Identification Form—Final Goals
Criteria Weighting Formula Form—Initial Weighting
Criteria Weighting Formula Form—Revised Weighting

2-22
2-29

3-2

3-6
3-10
3-12
3-13
3-16
3-18
4-10
4-12
4-13

4-14
4-18
4-20
4-22
424
4-26
4-28
4-32
4-34
4-36
4-38
4-48
4-60
4-62
4-64
4-66

DRl TR

[y
]

)

e
!

.|

PR
LR
PN
Iyt

e
k] I.I.l ’
- _I_ ..

"l

. I'. .",".1
& 4
.

'\-
> 2

3
LR
L

TR

- .
. B
LRI
» »
o .
. .

TR T W g W e Py B LS W LN

AFCMD
AFCL
AFPRO
APSE
ASD
CDR
CPCI
CSC
CSCI
DACS
DAE
DID
DOD

DOD-STD-SDS
DOD-STD-SQS

ESD
FCA
FSD
HOL
I/0
V&V
PCA
PDR
QA
QM
RADC
SD
SDR
SPO
SSR
STARS
TRR
V&V

PO vt Al A A ARSI A s Ghth At i u s i VMl M Sl N B Sl e LA Sai Bk i & iy

Ty ¥ TV TE TN T

GLOSSARY

Air Force Contracts Management Division
Air Force Logistics Command

Air Force Plant Representative Office
Ada programming support environment
Aeronautical Systems Division

critical design review

computer program configuration item
computer software component

computer software configuration item

Data and Analysis Center for Software

Defense Acquisition Executive

data item description Do
Department of Defense ‘::-'_
Department of Defense software development standard L:‘
Department of Defense software quality standard ——1

Electronic Systems Division

functional configuration audit

full-scale development

high order language

input/output

independént validation and verification
physical configuration audit
preliminary design review

quality assurance

quality metrics

Rome Air Development Center

r"
£

P s

P
’

Space Division

-
rr

system design review \
1A
System Program Office -

software specification review
Software Technology for Adaptable Reliable Systems
test readiness review

verification and validation

-viii-

-7) -'— -'-b.‘ ~ '-‘ - ‘h‘ \ " R---'.A-"
r . o _-.-\J‘. \ N

\‘...

.,‘ - ,'-.'f' - ' ~. : \l". N o
BRSPS .»._4-' \ l‘.h A-hr..',.g l"t.h‘\‘b _nﬁu.\‘ AV

ﬂw
a v
B Ty 3

ez e
»

ARAIAR

.
'
.’-V

[hNFS

.“. '(:

X X3
»

paa A,

. - % .
RS VIR S

LORN '\". ‘r'v“ w0

TN

Talas

1.0 INTRODUCTION

1.1 BACKGROUND

There has been a recent, increased awareness of critical problems encountered in
developing large-scale systems involving software. These problems include cost and
schedule overruns, high cost sensitivity to changes in requirements, poor performance

of delivered systems, high system-maintenance costs, and lack of reusability.

The government (the Department of Defense (DOD) in particular) as a customer for
large-scale system developments, has sponsored efforts to address these problems; for
example, development of Ada programming language and Ada programming support
environments (APSE), proposed DOD standards for software development (DOD-STD-
SDS) and quality (DOD-STD-SQS), the Software Technology for Adaptable Reliable
Systems (STARS) program, proposed STARS measurement data item descriptions
(DID), and various development aids and tools. These all provide partial solutions.

Since 1976, Rome Air Development Center (RADC) has pursued a program intended to
achieve better control of software quality. Through a series of related contracts, this
program has sought to identify key software quality issues and to provide a valid
methodology for specifying software quality requirements and measuring achieved
quality levels of software products released incrementally during the software life
cycle. A quality model was established in which a hierarchical relationship exists
between a user-oriented quality factor at the top level and software-oriented
attributes at the second and third levels (criteria and metrics). Software quality is
predicted and measured by the presence, absence, or degree of identifiable software
attributes. (See Sec. 2.2 for an explanation of the quality model and an overview of
quality factors and attributes.)

The Final Technical Report for this contract (F30602-82-C-0137) contains the most
recent results of the RADC software quality program. This report incorporates
pertinent results from and uses foundations established in previous contracts. The
Final Technical Report consists of three volumes: the Final Report, the Software
Quality Specification Guidebook, and the Software Quality Evaluation Guidebook.

g

s
S
i
LS

P

g ?.;.j'

P Sl Tl Ut P
v ey f
Pl A AP o - -

SERUMR Y
[

v
-

Lad
-

[

1.2 PURPOSE

The purpose of this guidebook (Vol. 1I, Software Quality Specification Guidebook) is to

provide a comprehensive set of procedures and techniques to enable an Air Force

software acquisition manager to specify quality requirements for software embedded

in command and control systems. Volume III, Software Quality Evaluation Guidebook,

provides a comprehensive set of procedures and techniques to enable data collection

personne! to apply quality metrics to software products and to evaluate the achieved

quality levels. Volume I, Final Report, summarizes the results of contract task

efforts.

The purpose of the quality metrics technology is to provide a more disciplined

engineering approach to specifying, predicting, and evaluating software quality. The

benefits of this approach include software life-cycle cost savings (or cost avoidance)

and software products that reflect user-customer quality needs. Rigorous application

of metrics at incremental releases of software products throughout the life cycle

provides for early detection of quality-related problems. Periodic assessment of

quality levels provides better management visibility and enables timely decision

making.

1.3 SCOPE

Section 2.0 describes the role of quality metrics in the software acquisition process.

Descriptions of the system acquisition life cycle and software development cycle are

provided with a discussion of their relationships. Specifying quality requirements and

monitoring software product quality levels are described within the life-cycle

perspective. The software quality model and framework elements are introduced.

Section 3.0 describes quality framework terminology and concepts key to

PR A Sl i
P .

understanding subsequent details. All framework elements—factors, criteria, metrics,

worksheets, and scoresheets—are also described.

v
Section 4.0 describes procedural steps for selecting and specifying quality e

h-'\
requirements in terms of quality factors and criteria and for selecting metrics. Trade N

P
studies are identified to aid decision making, and, for clarification, an example for a (™

* .
=

v 0
O
P

.

s

’
. s

| AR

¢y

) N
p 73
r -

. DN
il s
A" command and control application is continued throughout the procedural steps. The B

" - - - . » - - '. \

N procedural steps for assessing ‘compliance with specified software quality requirements -::'-".

» b -%:-

also are described.

: This guidebook incorporates pertinent results from previous research concerning

E: software quality measurement ‘conducted for RADC. Results of this research are

v described in Software Quality Measurement for Distributed Systems, RADC-TR-83-

175, Volumes I, II, and IIl. Software life-cycle phases and terminology used throughout

- this guidebook are consistent with the December 1983 draft of DOD-STD-SDS. ’; ‘
:: Significant enhancements to previous contract results are noted in the following Efjf;:}
X paragraphs. T
N The software quality model (described in Sec. 2.2) addresses software quality at three
i hierarchical levels: quality factors, criteria, and metrics. The methodology described Z‘_i::
" in Section 4.0 uses same three categories. The hierarchical levels of quality parallel
. the chronological procedural steps in the methodology (i.e., factors, criteria, and %
g metrics). Procedural steps are detailed and include consideration of interrelationships f_
E‘ among quality factors and relative costs to develop high quality levels. }_-:\
s e
. Framework elements are also enhanced. Factors are categorized under performance,

: fesign, and adaptation to aptly indicate acquisition concerns. Criteria are organized

l:: under the same three acquisition concerns, thereby simplifying the attribute

relationships. Metric questions on the worksheets include explanatory information and

A formulas and are nearly identical to the questions in the Software Evaluation Reports

::- proposed as part of the STARS measurement DIDs.

1.4 USE OF THE GUIDEBOOKS

t This Software Quality Specification Guidebook addresses the needs of Air Force .

: software acquisition managers. Procedures are provided for specifying quality :_' g
requirements and for assessing compliance with requirements. The Software Quality h-
: Evaluation Guidebook (see Vol. III) addresses the needs of personnel collecting and :.:.}?;-
~ analyzing metric data. Procedures are provided for applying metrics, generating jl:ﬁ;;\
\ metric scores, analyzing scoring, and reporting results. }"“
b R
. R
| 1-3 ;::;:Ej
\ f‘i‘

S N U T e ety
= AN A S e ".-"i"'"" ~ .‘:__i\ :_.. s '??'{::—f{' -

)

l .
o

'-".l

s

»

r.
0,

Pl

A
1 by
-

»

”
.

=7
P

ke b o
a r".'r‘"'.
R R R

L
»

4

N

‘l‘a

iRt H ‘ d Sk ke - rovTawTren T T T T

T TR T TN

Performance
and Devgn S——’ SystemSystem Segment o Life-Cycie Phates
Quality Metrics Technology Requirements Speciication el FCa
SOR SR POR CDR TRR Pk
___— v VvV VvV v v 9
Sottware Quahty SpetitySottware Quality
Specification Quahty Requitements |
Guidebook Requirements and Goals
' 4
P . - |
18 Metnodology H [}
H o Piocedures H]]
! e TradeStudies |]
H H] Software Quality Comphance Prob
: [] Framework Elements : :
i)
: . Factons :
H . Criteria '
: . Metricy : *
E [} Worksheets E
! . Scoresheets ! Life-Cycle Products
] . Definitions)
: :
]]
tearrmam—- P -~
1
:
Sottware Guahty Evetuate [Periodic Evaluation at incsemental Product Release) e Spectxatons
Eval > hieve < ¢ Dotuments
Guidebook Quanty

Figure 1.4-1 Software Quality Measurement Methodology

s

5‘-
»

&

» rr oy m

R
L

A

0
.

Fe,T
t

~

H

e

b

P T S
Ak
2 R Yo T ik Jo

¥
2

e T . Tt LT WM TS T L T e T 4T A rv I bab Siut aidh 4
S A T e R PR W N ARG S G AR SARN B P At gy

o e -~ [A AN M AL e B0 ahde- it oitd ‘ol G Jas g M BEL nam

A
” J.J'i

-n.

’F’s'
4 ~

7

By By Sl St
s 7,
s fe

Procedures in each guidebook are contained in Section #.0. Sections 1.0, 2.0, and 3.0
contain nearly identical information on the elements, perspective, and role of quality

e
l‘ ‘.",.’ &

L
¥ 3

metrics technology.

-

The guidebooks were designed for use with new projects, in which procedures are
performed (primarily) chronologically throughout system and software life cycles as
depicted in Figure l.4-1. Using quality metrics technology and guidebooks for
evaluating system and software products in other contexts is addressed in Section 4.0.
Detailed explanations of life-cycle phases, review points, framework elements, and
methodology are provided in Sections 2.0, 3.0, and 4.0.

N
S

S
Ry

o

£
=
.‘é
1-5 3

R
2
b
> g e e et e R o SR ERONY N
i B SR AERURONY RN A
A% .' \ _x.-"n_ﬂ-, xR % .. S
" \‘.\‘:\:_. 1\5‘\ ""‘ h \}I\‘ W} } 1\ .\\-‘\\\ \ky

TR T T R Y Y R P N VO e L N L L L ¥y T a"s "Te Tae "aTa"e"h "k " a"Aaes "aia ko ')'_h'.).‘"ﬁ:

7

,
<

¥

D
- .
o

PP

2.0 ROLE OF QUALITY METRICS IN THE
SOFTWARE ACQUISITION PROCESS

e
4 A
R

"I

A

.
RERSIRSIVAS

This section examines elements of Air Force system acquisition and software

acquisition processes, describes the process used for specifying and monitoring quality

—r—
P

levels, and discusses the role of quality metrics (QM) technology in the Air Force
software acquisition management process. Considerations include how QM technology

= F\

e can be integrated into the Air Force software acquisition process and how existing
:::: mechanisms within the acquisition process can be used to implement QM technology.
A

PRl

Advantages and disadvantages of using QM technology in software acquisition
management and of integrating QM technology into the software acquisition
management process are also discussed.

2.1 SOFTWARE ACQUISITION PROCESS

The following sections describe selected concepts associated with Air Force software
acquisition management, including system acquisition life cycle, software development
cycle, life-cycle relationships, software acquisition management, verification and
validation (V&V), and quality assurance (QA). Concepts introduced here provide a
basis for discussions of QM technology integration and implementation in the
acquisition process in later Sections. The system acquisition life cycle and software
development cycle are fully defined in DODD 5000.1 and DOD-STD-SDS and are only
summarized here. This Section is not intended to describe all activities of each life-
cycle phase but to establish the background for discussion of the role of QM

technology. L
2.1.1 System Acquisition Life Cycle an
o -
13
The system acquisition life cycle defined in DOD-STD-SDS consists of four phases: "j";

concept exploration, demonstration and validation, full-scale development (FSD), and
production and deployment. Four major decision points are associated with these

s

-
s

. phases as shown in Figure 2.1-1 and as defined in DODD 5000.1 (Major System
Pt

Acquisition). These points are mission need determination; concept selection,
AN p
o milestone I; program go-ahead, milestone II; and production and deployment, milestone
- 2-1

A1 ey gttt e '.)' T), SRS RTINS SRS CUAC '__.'_F;_..'._d‘._'."\ LGS

. ‘\-._}-. A -.)j-_ B R S ’\# " " ”.h J~" s.*‘ o~ ’,- - ‘,. ..): ’{‘) AN IENEN -:“'-.."\.1’ ~

" -\'.)_ NS .; RN et .'-_‘.‘- -‘. o) ;. - e -"-. - <- ,p_\' x g .' (_.)_‘.-‘.r, < -“,\-:.,‘-'.‘_J‘,..-.._

e by S e &1.3:.'\'. I d "-.” “ ,.ﬁ . S . o0, o a < w0

(_-‘.‘ . * - ~ w NV - < = P A0 pAREIA g xo o al . . N " o g
! “\\: ¢
%, -
; 's L}

¥
N
_h . . ".Q
L]
W e
tnJCe b
M . N
2» Y
- L
L ﬁ
o i
L . * "5)
i hl
> co,
oo
% 3
A
b " W
::.'
N
.‘{,
A%
SN
s A (Secretary of Defense Decision Paints)
.':'.
_n..\:
T
.: MISSION MILESTONE | MILESTONE I MILESTONE In
) NEED
: CONCEPT PROGRAM PRODUCTION &
= o DETERMINATION SELECTION GO-AHEAD DEPLOYMENT
32N
A CONCEPT DEMONSTRATION FULL SCALE Pnooufnourl
. EXPLORATION AND VALIDATION DEVELOPMENT Joeno MEN
n"f-
;"-_v_ {Life Cycle Phases)

Figure 2.1-1 System Acquisition Life-Cycle Phases and Decision Points

&~
&
e ikl 503
K Mog® W

1 Ecx

LSS
\: >
s i
ey Y
o 1
e -
d. -
g.. » . f

A SRR B LN ",.;

.
&
S

S ‘ N }S'- *\ \\;-::.W-:.'; k
e a

BRI
ol 1T

* "A’_ _"),l’_

A A

8 5o,

a

.

EEl
PR AP AT

III. The Secretary of Defense, advised by the Defense Acquisition Executive (DAE),
decides at these points whether to continue the program and proceed to the next phase
or to terminate the program. The system acquisition life cycle applies to the whole
system, not the individual parts.

Concept exploration is the initial planning phase, during which the role of and plans
for using computer resources in the system are explored. During demonstration and
validation, translating operational requirements into functional, interface, and
performance requirements is completed; and requirements for each hardware and
software configuration item are defined. During FSD, the system is designed, built,
tested, and evaluated. These initial three phases should result in a system meeting
specified requirements. Production and deployment includes production (if applicable)
and delivery and includes all activities involved in supporting the system until it is

retired.
2.1.2 Software Development Cycle

The software development cycle, as defined in DOD-STD-SDS, consists of six phases:
software requirements analysis, preliminary design, detailed design, coding and unit
testing, computer software component (CSC) integration and testing, and computer
software configuration item (CSCI) level testing (see Fig. 2.1-2). This cycle, however,
is not standardized and there are many variations throughout the industry. Although

names and breakdowns vary, the same process is generally followed.

All software requirements are specified during software requirements analysis. The
authenticated software requirements specification (signed off by both the customer
and contractor) forms the baseline for preliminary design. During preliminary design,
a modular, top-level design is developed from the software requirements. During
detailed design, the top-level design is refined to successively lower levels until
individual units, which perform single, nondivisible functions, are defined. During
coding and unit testing, the designer translates the design approach into code and
executes verification tests. During CSC integration and testing, code units are
integrated and informal tests are performed on aggregates of integrated units. This
cycle concludes with CSCI-level testing, during which formal tests are conducted on

the software.

«
’

.
Bonnl il it

, , <
PN R)
’
!
. 1
e

1
's
i

H] B

l'l
o
y 4y "

|
-4

o
~ .
"
LS

.
A
.
wtand

.
1

——

et

[PR TN
* L

)
[i
LI
i A Gy

. a"

Y

1 .
Y
PRI

T,
4

btk Bl 8 ke k- Ron A MNNALE M Cn-a B

SOF TWARE
REQINREMENTS
ANALYSIS POR
PRELIMINARY
DESIGN DR

DETAILED
DESIGN

CODING AND
UNIT TESTING

CSCINTEGRATION

AND TESTING
TRR FCAPCA
CSCI-LEVEL
TESTING
Figure 2.1-2 Software Development Cycle
R AN R ¢ N

Sk ~ﬁ .w- S s. RSO ,c_‘-_-}.f-.
LN

ot ""'- -. SN AT
, S a:}L}-‘-'-}\ '._J\. 5

-

'\ "i\hu_&'!‘\

I P P)
. et Tty

e Ny

’ LR
v .
AR n'."

-y s,

e

. . e LRSI
P AP LR E . o] ‘ot

T e T S W T T T T N N N Y Y Y T T T AN N W YN e T e w e -

As with the system acquisition life cycle, the software development cycle has decision
points associated with most phases. These decision points (shown in Fig. 2.1-2) are
the: software specification review (SSR), preliminary design review (PDR), critical
design review (CDR), test readiness review (TRR), and functional configuration audit
(FCA)/physical configuration audit (PCA). These decision points are quite different
from decision points associated with the system acquisition life cycle. At these
decision points it is not determined whether to continue or terminate the program;
rather, progress up to that point is reviewed and it is decided if the developer has

completed the current phase and is ready to proceed into the next phase.

2.1.3 Life-Cycle Relationships

Each CSCI to be developed goes through the entire software development cycle. The
software development cycle can be completed in a single phase of the system
acquisition life cycle or can overlap several phases. For example, software could be
developed for risk-reduction analysis during concept exploration or demonstration and
validation. This software could be used to validate the feasibility of an algorithm or
to compare alternative approaches. This type of software may not be in the language
required for the operational software and may not be targeted for the same computer.
However, it still goes through the entire development cycle. The same is true for test
software developed to aid in validation of the operational software. Operational
software development may overlap several system life-cycle phases; requirements
definition for operational software begins early in the system acquisition life cycle,
although operational software is not fully developed until FSD. In this guidebook
operational software quality is the primary concern; therefore, the relationship of the

operational software development cycle to the system acquisition life cycle will be
examined.

There is a specific relationship between the operational software development cycle
and the system acquisition life cycle in most system procurements (see Fig. 2.1-3).
The software requirements analysis phase overlaps part of the demonstration and
validation phase and the beginning of FSD. The remaining operational software
development phases occur during FSD; i.e., preliminary design through CSCI-level

testing of the software development cycle. This relationship is assumed for the
remaining discussions.

e, k e -"~'.-'f-'r"\'~'~'"’."'-".'-' C
DEIEY SN IP I RIR PRI I DS AP AT DO MRS A IERERSIE N

Y

“:_'l.g Al

/

'

i L

¥ X0e

l.'
Sa
oy »
ES L3

=

s
'A
[

A"
b
.

.
7.
', v

~

"

LRI

hl

o _r

SYSTEM ACQUISITION LIFE CYCLE
DEMONSTRATION PRODUCTION
concepr ANO FULL SCALE DEVELOPMENT AND
£APLORATION VALIDATION DEPLOVMENT
—— +~
1]
4 \
Pl N
- - \
OPERATIONAL P \
SOF TWARE PR \
OEVELOPMENT Pl \
CYCLE P SSR A
Pid A" \
\
SOF | WARE .
REQUIREMENTS \
ANALYSIS DR N
\
\
PRELIMINARY \ \
DESIGN R \
7 A Y
\
DETANED \\
DESIGN N
\
\
CODING AND \\
UNIT TESTING \
\
\
CSCUINTEGRATION N
AND TESTING :
J
TRR FCAPCA
CSC1-LEVEL
TESTING

Figure 2.1-3 Life-Cycle Relationship between the System and the Operational Software

Lo ke S an Bon B S s st b Se g dath Bl Eaf fe SR BN Sk SR AL A g A i A R

2.1.4 Software Acquisition Management

The software acquisition manager has various responsibilities during the software
development cycle. This Section focuses on two general functions of software
acquisition management: (1) specifying requirements and (2) monitoring development
to ensure satisfiying the requirements. To describe all that this manager does during

the software life cycle is beyond the scope of this guidebook.

Specification of software requirements begins with development of the system
specification and continues until all requirements for each CSCI have been specified
during software requirements analysis in the software development cycle. These
requirements include more than traditional functional and performance requirements.
They also include interface, human engineering, language, data base, delivery,
self-test, anomaly management, resource reserves, and quality requirements. Many

decisions are made to specify these requirements.

The software acquisition manager becomes involved at the system level, when system
functional tasks are allocated to software or to hardware. Allocation decisions may be
based on trade studies, system engineering, and risk analyses. Once the allocation of
functional tasks is completed, specific software requirements can be identified. The
result is a set of software capabilities, performance levels, and design constraints.
Identification of these specific requirements usually involves decisions supported by
trade studies. Such trade studies may include, for example, higher order language
(HOL) versus assembly language, distributed processing versus centralized processing,
growth capability required for timing and sizing, the degree of human operator
interaction required, and efficiency versus maintainability. These software trade
studies consider life-cycle costs, risk, schedule, capabilities, software performance,
and final product quality. These activities are concluded when the System Program
Office (SPO) authenticates (signs off) the software requirements specifications for
each CSCL

Once software requirements are specified, the acquisition manager begins monitoring
software development. Monitoring continues throughout preliminary design, detailed
design, coding and unit testing, CSC integration and testing, and CSCI-level testing

and may continue into the system integration and testing that follows. The primary

concern of monitoring, other than schedule or cost, is whether the software satisfies

the requirements. Monitoring provides the acquisition manager with visibility of the
evolving product in order to track technical progress and quality. This visibility is
achieved through various reviews, audits, documentation, and products required
periodically throughout development. Established criteria and measurement methods
for each review and audit and for all documentation and products are nescessary for
tracking progress. Tracking enables the manager to identify problems early enough to

correct them. Two activities providing feedback are V&V and QA.

2.1.5 Verification and Validation

The purpose of V&V is to provide the Air Force with systematic assurance that
acquired software will perform missions in accordance with requirements. The terms
verification and validation are often used interchangeably, but in the software
development cycle distinct concepts are associated with each. The meaning of these

terms as used here is as follows:

Verification is the iterative process of determining whether the product of each
software development phase fulfills requirements levied by the previous phase. That
is, (1) software requirements are verified to ensure that they fulfill system-level
requirements, (2) the software design is verified to ensure that it satisfies
requirements in the software requirements specification, and (3) code is verified to
ensure that it complies with the top-level design and detailed design documents. This
process does not consider whether system-level software requirements are correct or

whether they actually satisfy users needs.

Validation is a continuing process to ensure that requirements at various levels are

correct, thus satisfying mission requirements defined by the using command.
Sometimes validation is considered to be the system-level test activity that validates
the CSCI against software and system requirements. In reality, it is much more than
that. Validation, like verification, continues throughout the software life cycle. For
example, when software requirements are allocated and derived, a system-level

requirement could be found to be vague or incorrect; or during design, it could be

discovered that a software requirement is infeasible or ambiguous. Feedback to the

R P S T TR

o L. R

N A R

. e L L
Aeadnt o

a
.
N

v
’

LI .o e e .
T . AR .
o L
4 gt e e S . -
X S BTN S R

.
Jer s
LA

et

AN
. »
JI

.
e

LA Ay

ol

-‘ 0' l. .‘ .- n‘
' . ‘p PRI
. ER

A Y

a”a

.-. -_.-_"‘]‘..

PRV RS

S
TR

T rT
A
IR
.

L I

Ny
PP

o

manager enables corrective action to be taken early in development, thereby reducing

risk and cost.

The concept of V&V and its relationship to software development products is shown in
Figure 2.1-4. V&V provides feedback to the software acquisition manager concerning
software technical performance. The term IV&V is used when V&V is done for the Air
Force by a contractor other than either the prime contractor or the subcontractor who

is developing the software.

2.1.6 Quality Assurance

According to MIL-5-52779A, the purpose of software QA is to ensure that the
software delivered under a contract complies with contract requirements. This type
of QA program will not ensure development of a high-quality software product unless
software quality attributes are specified in measurable terms as part of the contract.
The objective of current QA programs is to provide feedback to the acquisition
manager concerning various aspects of the development process. QA is similar to
V&V, the major difference being that V&V provides technical feedback on software
products at only a few points in time, whereas QA provides feedback on a wide range
of development activities. But contractual software quality is not normally defined in
quantitative terms. The current goal is simply to achieve better quality through

controlling the development processes.

Section 2.3 explores how QM technology can help to expand the scope of QA programs
to include specification of software quality requirements and measurement of
achieved quality levels for software development products. The following paragraphs

explain the current scope of QA programs.

At one time, software QA was equated to testing. As an illustration, Section 4 of the
CPCI development specification (according to MIL-STD-483) was called Quality
Assurance Provisions. However, as with other products, it was learned that quality
cannot be tested into software. Because of cost and schedule impacts, it is usually
too late to make changes when quality problems are found during testing. Quality can
be affected by how code is written and how software is designed. If a software quality

problem is found during testing, it is usually very expensive to redesign and to change

e Tt e A e e ity o g LU A e e e Bt B e e Tk v—-.—ﬂ
“~

Sty

'l
aor_a A

(3

' &

MISSION
REQUIREMENTS

Vahdation

SYSTEM

SPECIFI-

CATION

Figure 2.1-4 Relationship of Software Development and v&vV

REQUIREMENTS
(SOFTWARE
REQUIREMENTS
SPECIFICATION)

DESIGN
(TOP-LEVEL DESIGN AND
OETAILED DESIGN
DOCUMENTS)

CODE
(CODE. DATA, AND/OR
TEST PROCEDURES
AND RESULTS)

g

REQUIREMENTS
VERIFICATION

DESIGN
VERIFICATION

SOFTWARE
VERIFICATION

SOFTWARE
PRODUCT

»
' e

Y

L N BN S n
[

bk
v

o

WSS

IR L L AL AL A

‘ ‘- P A
. SR

. [P AN N

PP
S Te e
et

AR el it o v - AN IR «®

the code. Quality should be planned, designed, and built into software. This

realization has lead to the current life-cycle-oriented QA approach. This approach

focuses attention on all phases of the software development cycle; and software QA
now includes many activities, such as ensuring that software is being developed in
accordance with plans, that requirements are traceable, that design and code are
easily and economically supportable, and that testing is accomplished as planned.

These activities provide necessary feedback to the software acquisition manager.

Software quality assurance programs, however, are primarily administrative rather
than technical. For example, the QA organization does not trace requirements but
ensures that Engineering has developed traceability matrices. The QA function is
essentially a checkoff function applied during the software development process; i.e.,
QA ensures that everything is done as planned. Software QA continues throughout the
software development cycle (see Fig. 2.1-5).

Software QA is an evolving discipline. Experience has provided insight into which
development practices tend to produce a higher quality software product, and the QA
program ensures that selected practices are used by checking the development
process. The next step to improving quality is to quantitatively specify quality
requirements and to measure and control the quality of the software product as it
evolves. Implementing QM technology in the Air Force acquisition process w. |
provide the added dimension of quantitative measures to addressing quality concerns

for software products.
2.2 QUALITY METRICS

The purpose of QM technology is to enable the software acquisition manager to specify
a desired software quality level for each quality factor of importance to the
application and to quantitatively measure the achieved levels of quality at specific
points during development. These periodic measurements enable an assessment of
current status and a prediction of quality level for the final product. Some problems
with delivered software products have been that these products are (to varying
degrees) unreliable, incorrect, and/or unmaintainable. QM technology addresses these

and other quality-oriented problems by providing a means to specify quality

K)
i)
"
193
A%
- e
= i3y
K Nl
2 37
vy M A
N .]
y . (Anytime ;‘,_.—."
o During the e
:{ Development Process) QA Function E ~
N L~
g
[4 E:
T = IS THE SOFTWARE FEEDBACK TO
s SOFTWARE ACTIVITY OR PRODUCT IN ACQUISITION o
N ACTIVITY ——p| ACCORDANCEWITHMIL- | o MANAGER 5
b7 OR STDs, PLANS (SDP, TEST e
N PRODUCT PLAN, SCM PLAN, SQA Ny
A ¢ PLAN, ETC.) OR THE CDRL? K
- Ao
o bt
[y
o k3
N 8o
- ‘-}‘

L Figure 2.1-5 Software QA Function

‘_'.. i -:\.
e S
. i
" Ce
) -
¥ LY

.;‘ ‘: {{:“ -

-~ -
- 5\
. >
e *_
4':; R‘.“
'4"] "
s, -
i
- o
) -
LS g
-y ‘. -
o e \
1. -‘
ﬂ. -
~ e

el Bal Ba b Ball N R

requirements, to quantitatively measure quality achieved during development, and to
predict a quality level for the final product.

QM technology measures the degree of software quality, not the level of software
technical performance; e.g., how easy is it to maintain the software, not how accurate
is the navigation algorithm. However, the process of specifying and measuring quality
levels is analogous to the process of specifying and measuring technical performance.
Both processes begin with similar activities: system needs are assessed, trades are
performed (involving resources and levels of performance or levels of quality), and
requirements are specified. Subsequent phases involve evaluations of how well these
requirements are being satisfied.

Technical performance levels are traditionally evaluated by modeling in early
development stages and by testing in later development stages. Quality has
traditionally been evaluated by such methods as reviews, walkthroughs, and audits.
This type of quality evaluation ensures that, for example, designs are traceable to
requirements, configuration management is adequate, and standards and plans are
being followed. However, it does not address such quality issues as software
reliability, correctness, and maintainability. QM technology enables a quantitative
assessment of these types of quality factors at different stages of development,
thereby ensuring that specified quality levels are being satisfied in a manner similar to

performance evaluation by testing.

Figure 2.2-1 depicts the software life-cycle model used in QM technology. The
software model is shown in typical relationship to two system acquisition phases.
Eight development states are shown with typical review and audit points. There are

two system-level activities involving software: system/software requirements analysis

and system integration and testing (both shown in dashed boxes). (Operational testing

and evaluation is the last FSD phase but is not shown as it is not normally performed

) am e aant 2
T .
.8t

1
e,

by the development contractor.) There are six software development phases: software

r
vore

R requirements analysis, preliminary design, detailed design, coding and unit testing,
r' CSC integration and testing, and CSCI-level testing. These phases refer to the same
development activities as are described in Section 2.1. This division of activities was
E chosen because at the end of each activity shown in Figure 2.2-1 a configuration
{:'~ baseline generally is established, and software products (specifications, documents,
| =

[

- L] - ‘.: .‘
AN
b M e Ve

ot S A

T WL “l"'f \'-

NS
o,
e

A1

ey
PR Y
A l'_l"l"
» e o g e

[P

a0

P NTY e
P r"x'-.'t‘
.

(] t"’l_! [304

Ak

A

M

'HV?'

N TR
.

»
»
ool

.
£

S
o MR

2
.
7or Ty

) -
M
.. - '-'

|

ERC W
Py .
WPLFAN .L‘,*.‘J'_L

et

W e -
-

ot

-
-

SYSTEM ACQUISITION PHASES:

LR M

~E

DEMONSTRATION AND R vi N1
I VALIDATION I FULL-SCALE DEVELOPME

. 2 Gt

’..l_l

~“

Quality Metrics - Software Life Cycle Model:

o sor SN POR cor
> v v

[¥ Y STEMSOFTWARE =9

. IReouiReMENTS ANaLYsis |

:) ‘---—----“‘ﬂ_\
» i A

N ™

f.:‘ R 'A"Y?I%‘. ¥$
ARl

I PRELIMINARY l

DESIGN
S DETAKED
g DESIGN
P -, CODING AND
-, UNIT TESTING
TR CSC INTEGRATION
L AND TESTING
NS CSCI-LEVEL
Rk TESTING
> o e
YETE
Vol
AN
L et
5d ‘:j Quality Metnics - Specification:
o ——_——— 2 v
A =
J Quahity Metris - Momtonng:
—v9 2 \vi Avd 2 hv v v
1)

Figure 2.2-1 Quality Metrics Technology - Life-Cycle Model

'q"“-"'.'n" 4 ‘f.‘f
RIS,

LR

-®
P

NI

|

P)

I' ',‘ I'.' "I

rl ., .l .'
Jl 'l ,‘A‘

A.".’l s

-

ALt

&‘ .o w LE B BB LV B]
'))I-Fn’-.f 1'.-. T
"}I z’ »" Sl K

code) describing that baseline are available for review or audit and the application of _\‘.d’
metric measurements. Also illustrated in Figure 2.2-1 are the two points at which *}2
quality requirements are specified and the eight points at which quality levels are ,*,.’
measured (monitored). These measurement points generally correspond to the review j'_::'-
or audit points for configuration baselines. :
T
2.2.1 Framework -
5
A hierarchical model for quality has been established (see Fig. 2.2-2). User-oriented 3
factors (e.g., reliability, correctness, maintainability) are at the top level, 3-
software-oriented criteria are at the next level, and metrics—quantitative measures
of characteristics—are at the lowest level. *
This model is flexible in that it indicates a general relationship between each factor “_‘
and its attributes. This permits updating of individual elements to reflect technology
advances without affecting the model itself. For example, as new user concerns ;:j:}
evolve, new factors can be added at the top level; and as software technology evolves, k ‘
criteria and metrics can be added, deleted, or modified as necessary. There are F‘*
currently 13 quality factors, 29 criteria, 73 metrics, and more than 300 metric :
elements (distinct parts of a metric). Table 2.2-1 shows the 13 quality factors and Sy :
describes the primary user concern for choosing each factor. Quality factors and user
concerns are categorized by three types of acquisition concerns with respect to the ..- v
software: (1) product performance—how well does the software function in its normal e
environment; (2) product design—how valid (appropriate) is the design with respect to :EZ: X
requirements, verification, and maintenance; and (3) product adaptation—how easy is
it to adapt the software for use beyond its original intended use (e.g., for new \ ‘"
requirements, a new application, or a different environment). Lo
Figures 2.2-3, 2.2-4, and 2.2-5 show the quality factors, criteria, and metrics in the t__
hierarchical relationships of the software quality model. The metrics are identified by f}:.‘_
acronym only in the Figures. These and other framework elements for QM technology
are described in detail in Section 3.0. The following sections describe some aspects
involved in specifying and monitoring software quality using QM technology.
N
NG
2-15 5 \

L&ul [lal.!i.._nff,l: ‘(:‘.} M.._MJ»M‘ PV

0
'
N
.t
'»
n
Y

‘ }.'f'; o

.".,y«_“
.
. b

>

PR

P Aol A

tia)
*
s
e

.
Le, »
3

3

-'.'. ¢. ,

Sl

P

W

- -

.,l"lﬁ. X

oy
Rl
PN <8 o]

i A A “a P

.
R o

'ﬂ‘

‘,‘J‘-

"

(RN

(FACTOR)

(CRITERION) LCRITE

RIONj (CRITERION)

METRIC

METRIC

METRIC

Figure 2.2-2 Software Quality Model

e
"
"’

T

USER-ORIENTED VIEW OF AN
ASPECT OF PROOUCT QUALITY

SOFTWARE-ORIENTED
CHARACTERISTICS WHICH
INDICATE QUALITY

QUANTITATIVE MEASURES
OF CHARACTERISTICS

8t

Yoy E g
L,
T K

13

W

,.‘4---_

1 Ay A

e Ll O
8 %
B g

A

14
.

AF

,,v.
R

0
.. 8 &%

i AT AL
3 .\ ';-'-
G

) i T
» &

L)
”
a4 . '. 'l

.
' "
Ly

¢

A

.2,/ JRL

X

,, o

g
PR
PR

.
. .
« 8 &8 23 7

FRE-AR)
R DEDR o>

2
]
.

T Il

O e i
R WA

’
Ol]

N n";] p

s “! ~ PAR

T e P
P « .
l'l‘i'n a "
v e e el

Sl

NN

————
«™

Fl_n.l

L A e 4

OIS

P N B

Table 2.2-1 Quality Concerns

Acquisition Concern

User Concern

Quality Factor

HOW WELL DOES IT UTILIZE A RESOURCE? EFFICIENCY
HOW SECURE IS IT? INTEGRITY
PR O ANCE - | WHAT CONFIDENCE CAN BE PLACED IN RELIABILITY
HOW WELL DOES IT | HAT CONFIDE
FUNCTION? '
HOW WELL WILL IT PERFORM UNDER SURVIVABILITY
ADVERSE CONDITIONS?
HOW EASY IS IT TO USE? USABILITY
HOW WELL DOES IT CONFORM TO THE CORRECTNESS
?
DESIGN - REQUIREMENTS?
HOW VALID I THE
?
famids HOW EASY IS IT TO REPAIR? MAINTAINABILITY
HOW EASY IS IT TO VERIFY ITS VERIFIABILITY
PERFORMANCE?
HOW EASY IS IT TO EXPAND OR UPGRADE EXPANDABILITY
ITS CAPABILITY OR PERFORMANCE?
?
ADAPTATION. | HOW EASY IS 1T TO CHANGE! FLEXIBILITY
HOWADAPTABLESS | How EASY IS IT TO INTERFACE WITH INTEROPERABILITY

ANOTHER SYSTEM?
HOW EASY IS IT TO TRANSPORT?

HOW EASY IS IT TO CONVERT FOR USE IN
ANOTHER APPLICATION?

PORTABILITY

REUSABILITY

"
3

[A Ly
|75

SAKAAAS,
AWMLY E

A

l')l '{l",‘ :

4R
- S

lfl'

oY

LR A

- y

E
5 SO

'-'
g

A e e R e R T B e " B 3 S T R B A Sl ue- i W T e B Shal (_,ﬁ.—_r‘(}

EFFICIENCY
I
EFFECTIVENESS - EFFECTIVENESS - EFFECTIVENESS -
COMMUNICATION PROCESSING STORAGE

[__ ECH

.

}: Ee.
EP.2
INTEGRITY

L SYSTEM ACCESSIBUTY |

SS.1
$5.2

RELIABILITY

I_ ES.1

—_—
r ACCURACY J bNOMALY MANAGEMENT1 LSIMPLICITY]

AC 1

L— AM.1
I— AM 2
— AM.3
— AM 4
l— AM S
L AM 6
L AM.7

SURVIVABILITY

—

Si
Si2
SI3
Sta
SIS
Si 6

ANOMALY MANAGEMENT AUTONOMY DISTRIBUTEDNESS

MODULARITY LRECONFIGURABILITY

L AM 3
L— AM 4
. AM S
b— AM 6
L— AM 7

0P 1
0P 2
OP 3

[At }:
l— AM 2

AU 1 [_Dll

AU 2

USABILITY

OPERABITY !

tMO!
MO 2

TRAINING

I_TNi

Figure 2.2-3 Performance Factor Attributes

l_._REI

'
I 3
R

Pt
L

n

A

S Ve

AR
et e

g
Y' Ll it}

2 onilhou 2 S 2
iy)
0 I
.

- .

LS S04
) s
.ll'!'-
IR g

rogow v

had aam a0 L o AEn B A Bih kS A Som Men hes £ fo Ban bun 2o) on en Bea S0 4 op Bin gan kg g Sy Sha hon ity hing Rl o TR] da R
CORRECTNESS
COMPLETENESS CONSISTENCY TRACEABILITY

l_ CP1

]: s
cs.2

MAINTAINABILITY

[_ TC.1

TR T LTS v T T el Te

CONSISTENCY MODULARITY SELF-DESCRIPTIVENESS SIMPLICITY VISIBILITY
‘: s l: MO.1 $D.1 LS.y vS.1
cs.2 MO.2 $D.2 — $1.2 VS.2
$D.3 — Si.3 Vvs.3
| _sia
| sis
L_si6
VERIFIABILITY
MODULARITY SELF-DESCRIPTIVENESS SIMPLICITY VISIBILITY
t MO.1 $D.1 — i1 Vs
MO.2 $D.2 — Si-2 vs.2
$D.3 L S1.3 VvS.3
sS4
SIS
Si.6

2-19

Figure 2.2-4 Design Factor Attributes

t
ARSL
R

B

s

£
Iy

....
55 50

oy A
'.'."l.’

i

i Yl A /A A R BN e RSP o i Bl iy S B St iag B pon i Sl i s adi i thomath S g Rotu oy it i * Ao a0 da= i o i A her Aaa M o e ac £ b Mo BBk, ¢

itn'
s

EXPANDABILITY

Sis
Si.6

FLEXIBILITY

SELF-
GENERALITY MOOULARITY DESCRIPTIVENESS SIMPLICITY
GE? MO 1 S0 1 Si
GE2 MO.2 D2 St 2
03 S1.3
s1a

SLS
$1.6

INTERQPERABILITY

[~

SELF-
AUGMENTABILITY GENERALITY MODULARITY DESCRIPTIVENESS SIMPLICITY VIRTUALITY
ATt GE MO 1 SO Sk VR.1
AT 2 GE.2 MO 2 sD2 $1.2
AT3 so3 St3
AT4 s1.4

Figure 2.2-5 Adaptation Factor Attributes

FUNCTIONAL SYSTEM
. CONMONALITY OvERLAP INDEPENDENCE MODULARITY COMPAT BILITY
L FO 1 t 01 MO ! sY 1
2 D2 MO 2 sv2
3 sv3
sr 4
PORTABILITY SYs
SELF-
INDEPENDENCE MODULARITY DESCRIPTIVENESS
101 t MO 1 $O1
D2 MO 2 sD2
03
.
5 REUSABILITY
APPLCATON FUNCTIONAL SELE- e,
INDESZMDENCE SCOPE INDEPENDENCE \ DESCRIPTIVENESS l\ i
— DOC_NMENT ST
[a8 ACCESS BiLITY FS GENERALITY [: 01 MODULARITY t 01 SIMPLCITY o
222 752 . 02 : $02
- a1 e . %3 t—_—GE! twm — 503 . ::’
~* — ars e ; -
N 302 GE2 02 02
* avs i §TS
Si 3
sia
33
516

v .
3

-
o)

- s e . -
AR A Y S e, A

4
;
;

1

*

| Sy

'
"‘I.Y: T T
RNTIAD T
-

T .
T R
:j.“:-‘ 2.2.2 Quaiity Specification RO
.\' ‘.'_"
::.:- '
When determining and specifying software quality requirements, system needs are N
assessed from a quality perspective; the desired quality factors, associated criteria, 'f:_'j'.:
and applicable metrics are selected; and quality-level goals are derived for each j:'_‘._"w

separate quality factor. When assessing system needs, application characteristics
should be considered. For example, if the system will have a long life cycle, emphases
on maintainability, flexibility, portability, and expandability are recommended.

Factor goals define the required quality levels to be achieved for the factor (i.e.,

excellent, good, or average). In general, choosing a higher quality goa!l will result in
more resources being expended to achieve that level. When deriving factor goals,
interrelationships between factors should be considered because a high quality goal for
one factor may conflict with a high quality goal for another factor. Table 2.2-2 shows
the beneficial and adverse relationships between quality factors; some factors have a
positive relationship and others conflict. For example, specifying a high quality level
for most factors conflicts with specifying a high quality level for efficiency. These

relationships are explored in detail in Section 4.1.3.

A typical problem for an embedded software system arises when reliability is of the

P T
s T :
ot

. L e Y

' DRI -

S R I A

LA el B

.
O
LU BRCN

e a Ay

utmost importance because of the type of mission to be performed, but efficiency is

2 v‘ 4' 0'

also required because of space and weight limitations, and flexibility is needed because

«
e

A X

Lrat e MR M |

s b

of the variety of missions and/or targets. It is normally infeasible to select and

achieve high quality levels for all three factors. Highly efficient code is usually

tightly written assembly-level code and tends to be not as reliable or as amenable to

changes (flexible) as looser, more structured HOL code. And code written to be ‘;Sj::-:.;
reliable and flexible tends to be less efficient. Trade studies are needed to resolve ,
these problems. If some efficiency is sacrificed for reliability, then performance = s

goals (e.g., for accuracy or range) may be affected. If some flexibility is sacrificed

s UM B‘r M

for efficiency, then the scope of the missions and/or targets may be reduced. QM

e
¥

technology provides an aid for decision making when selecting quality-level goals,

when determining feasible software requirements, and for allocating acquisition

e

resources. Several iterations of quality tradeoffs may be required for choosing

reasonable quality goals. Section 4.0 provides specific techniques for choosing quality --‘j::

.
.
2

o e

factors and includes consideration of application characteristics and factor

interrelationships. —_—

I ML S E A A o AL R e i o & ol Btk L arikh “AMME S vt S - iy mivtodane

Table 2.2-2 Software Quality Factor Interrelationships

ACQUISITION CONCERN PERFORMANCE DESIGN ADAPTATION
A E|IIR[S U M| V|E t | PR
< FINJE |U {5 cc) A | E|lXx f NIl OIE
g Serox | L{EIELY IR AT AR E]E]Y
s FACTOR clelaljifrlelv] FINIT|R]AIA
i AFFECTED I |R[B|V|[L]C|A|I|D|B|O][B]|B
| El1 (v Al T lalati|e]| 1]
a NIT (LB IT NN BB L e | L)L
Y| auaury AR LN N A A A R R AL,
o FACTOR Y|l SIT LSy 8] Y}y
N[sPECIFIED t
< Y rlyly L
& ! '
N Y v
p | EFFICIENCY W N\
P CIENC A Y !
£ i
£ | INTEGRITY v !
[o)
R I |
w | RELABILTY V4 AN [|
N | survIivaBiLITY NS N N/
¢ t N/ AN AN | L LV |
N : !
USABILITY N N YANVAN I
D | CORRECTNESS |
S '
i | MAINTAINABILITY VA
N
VERIFIABILITY N/
EXPANDABILITY VANV VAV,
o | FexisiuTy W
D
A
P
t | INTEROPERABILITY K | <
. :
P ' | PORTABILITY V4
£ 0
o N | REUSABILITY N/ %
ol
P
‘® /\ = POSITIVE EFFECT
E'_’A;
< N/ = NEGATIVE EFFECT .
T BLANK = NONE OR APPLICATION : “;
DEPENDENT i
1 F":‘
l"~.‘ ‘q--
i =
= 2-22 o
Ch '-:\

itk e A ARA L A e e s T A A R R . A T R S R T T U N AN e TR R L L s v

2.2.3 Quality Monitoring

When monitoring software quality, the quality metrics (in the form of questions on
worksheets) are applied to software products (specifications, documents, code) at
different stages of the development cycle, and a quality-level score is calculated for
each factor. The factor score predicts a quality level for the final product. The
points in the development cycle where data gathering and analysis are recommended is
shown in Figure 2.2-1. These points generally correspond to normal reviews and audits
conducted when a configuration baseline has been established (SDR, SSR, PDR, CDR,
TRR, and FCA/PCA). Before each review or audit, the metrics selected for the
project are applied to software products resulting from that phase of development.
This results in a quantitative value for each metric. The metric values are then used
to calculate scores for each criterion, and the criteria scores are used to calculate a

score {predicted quality level) for each factor.

The quality metrics are applied at incremental points during the development phases.
This enables periodic review of progress in meeting quality goal requirements and aids
in pinpointing areas of weakness (and strength) in product quality as the product
evolves. There are two types of metrics—anomaly detecting and predictive. Both are
used in scoring. A low score for predictive metrics indicates that a low score will
probably result for the end product because the design is not considering aspects
important to achieving the desired quality level. For example, if the design has very
little spare storage capacity, the end product will not be highly expandable. A low
score for anomaly-detecting metrics indicates an actual design or code deficiency.
For example, if provisions are not made for immediate indication of an access
violation, software integrity would be jeopardized. Evaluating low metric scores
provides an opportunity for identifying deficiencies and anomalies during development

when they are more easily corrected.

Worksheets have been devised to help gather metric data. There is a separate
worksheet for each development phase, and each worksheet lists only metrics
applicable to that phase. A more detailed explanation of the worksheets is provided in

Section 3.4.

R RIS € akta (e AV I 6o IO A BV S0 (AL 104 S NN A ot ot A ol o/ s e B ol R i e St S AL S A e 8 g s s A e n s

\‘-. s
oy

L

o
L
'. I{

.""'..~
o Ay

l' '."

2

ey bty
SANCNLLTATLL

o k

SDR SSR
r o el e e—————
SYSTEM/SOF TWARE § SWREQUIREMENTS DR
I REQUIREMENTS aNaLYSIS ANALYSIS
[WiphignipsiptipiipAipiiyigul
. PRELINMINARY
. CDR
: l DESIGN 9
Sottware . H DE FAILED
. . DESIGN
Developmen . . :
. . CODING AND .
Cycle ' . UNIT TESTING T
. : CSCINTEGHATION b
. . AND TESTING H
. . TRR FCAPCA t i
: . g
: : CSCi-LEVEL Vo
: . TESTING Vo
Enisting M : (BRI Y > L
- - . § SYSHEMINTECRATION | k—-j
Sotrware . . AND TESTInG .
Acquisition ‘f—ﬂ
SPECIFYING MONITORING R
Manage!
Functions :
(~ SPECIFYING .
Sottware . dentifying Quality Factors to Be .
om Included :
. Determine Required Goals for Each M
Functions :

MONITORING

Gather Data at Review Points
Evaluate Dats

Compare to Requirements

Track Progress

Correct Deficiencies (as Necessary)

7~

A
A

g s e
RN
. .
Py

Figure 2.3-1 Software Acquisition Quality Metrics Functions

[2 et
LI)

ey
Py by dpe by byt

) 4 2

l,‘l{

Ty e Y Ty

L3

s T8 1
.

WA B)

P)

(%]
f
N
£
A

'1

I R R

et _;:,‘.r_'.
PIr I A

53 & e

el

)

5

;ii

Pyt

Te U HLEFLDEL TeFaTle s T8 &7 "a &7 ¢

Y
N 2.3 SOFTWARE ACQUISITION USING QUALITY METRICS

Two general functions of the software acquisition manager are described in Section
2.1.4: (1) specifying requirements and (2) monitoring development to ensure that
requirements are being satisfied. Also two general functions associated with QM
technology are described in Sections 2.2.2 and 2.2.3: (1) specifying quality
requirements and (2) monitoring development to ensure that metric scores are
predicting specified quality goals. When using QM technology, monitoring begins
earlier in the development cycle. The relationship of these functions to the software

life cycle is shown in Figure 2.3-1.

;.

P Specifying and monitoring have not usually overlapped. The specification of software
- requirements was normally completed before development monitoring began, as shown
in Figure 2.3-1. Metric questions have been devised to enable evaluation of software
quality reflected in the system specification available at the system design review

(SDR). This moves the start of monitoring forward so that the two functions overlap.

Several organizations normally are involved in performing these two functions.
Although the internal structure of the Air Force product divisions (ESD, ASD, and SD)
may differ, the relationship of the SPO to external organizations is basically the same
for each division. Organizations that may be involved in the QM functions and their
recommended relationships are shown in Figure 2.3-2. Organizational relationships are

discussed in the following paragraphs.

Several organizations should be involved in the specification function. The primary

organization responsible for software requirements specification is SPO Software

Engineering. However, SPO software engineers need help from both the using

i
command and Air Force Logistics Command (AFLC) to fully define software quality o
needs. Both organizations have a vested interest in requirements affecting system f.x'jf';:
._\"‘:-
operation and support. ,.‘_-__.:‘
. p
.\‘.\J
The using command is primarily interested in operational requirements and is oty
especially qualified to contribute to a definition of quality needs for the performance ::j}:.
interested in support requirements and is especially qualified to contribute to a

quality factors (e.g., efficiency, integrity, and reliability). AFLC is primarily -‘:—_i
5
Y

AN, 88
.n_;yx'l..

e - 4:“.:'.,_1._': - 'I-,_“:-."‘.' .

“ ~
d :
e “ . e S R
f;f- [N -“A{;L..‘(._' PRAP RO L ERC WIS L I SN N P

Using
Command
{ATUTACSAUMAC)

Product
Diviston QA
{ESO/ASO/SD)

Prime

Contractor

Air Traning Command 2t Force

Tactical Air Command AF Logutics Command
Strategic Air Command AF Plant Representative Office
Military Air Command System Program Othice
independent Vahdation and Venfication Rome Air Development Center

Associate
Contractor(s)

Electranics System Divison
Aeronautical System Diwvision
Space Division

Quaiity Assurance

Figure 2.3-2 Air Force Acquisition Relationships Involved in Quality Metrics Functions

A

1,
¥

Kis O0%

%

y

.

'.;’"

I

L
P Bt

b
[t

ARG
F R B P R

v
('

——
FEE I LAY D Y
PRI

e

LEPE Bl e et il Sl el atei gl gl i Sk aS b ML RPN INRCILE & R R R A N

s aaa RSB av-e v as rhblaoRl BV et pitdl el i - -

definition of quality needs for the design and adaptation quality factors (e.g.,
maintainability, expandability, and portability). With input from these organizations,
SPO Software Engineering can determine the contractual statement of quality
requirements. In addition, the Product Division Software QA organization is normally
tasked to ensure that quality requirements are included in the contract. These

responsibilities and relationships for the specification function are shown in Figure
2.3’3.

Several organizations also should be involved in the monitoring function. Among the
first activities are identifying and negotiating with the organization that will collect
and analyze metric data. If that organization is to be another Air Force agency, such
as Air Force Contracts Management Division (AFCMD), then the SPO needs to
negotiate the effort through a memorandum of agreement. If the organization is to be
an IV&V contractor, then the IV&V contract needs to be negotiated. These
negotiations must be completed very early in the program before data collection

starts, and SPO Software Engineering must ensure that necessary support is provided.

Several organizations could collect and analyze data, including SPO Software
Engineering, the Product Division Software QA, the Air Force Plant Representative
Office (AFPRO), and an IV&V contractor. The following criteria were established to
aid in selecting an organization: technical capability, labor availability, economy, and
data availability. Technical capability refers to the depth of technical understanding
of software by people in the organization. Labor availability refers to availability of
qualified people to perform this additional task (i.e., currently available or readily
obtainable). Economy refers to the least costly method for the SPO to obtain data.
Data availability refers to the ability to access the most current contractor
documentation and information. Informal lines of communication greatly influence

this factor.

We rated four candidate organizations using these criteria, based on our experience. A
score of | represents the best conditions and a 3 represents the worst for each
criterion. A total unweighted score was determined for each organization, with the
lowest score representing the best choice. The evaluation scores are shown in Table
2.3-1.

.

TR
e
T
Ayt
P

|
ha)
(] .

-l'q..‘,ll
T lalals

LT LY
.

£

2

I

.

.
¥,

SR)
5
“
NN

<
.
P]

Pl
A
s s
‘y
]

+
¢
-

Using
Command

Provide QM operational
requirements

Provide contract software

requirements

AFLC

Provide QM support
rquirements

SPO
software
engineering

Figure 2.3-3

Recommended Responsibilities and Relationships for the QM Specification Function

AR VLR A SRR S 0 R Rh Bk &

Product
Dwision Software QA

Verity QM requirements
In contract

TogT 2 e #

-

23

PaX

[] £ f
R RN P

DRy e -

l'l(l
et

vt

[l

L8

I ' B

Y]

oawa¢ SRR

-_
-
...............

.T......m mw.nu.nr Hm
P S8 Sy Al S

».k- L, %
$k\
\\

e R O

woSSqe>

7
10
6
7

V. 10/e). 47T

S C—aqO—I—F>

og-g

> q—aqO——>

Y. (..]0].

2-29

vga qo———k>

WU Z -V

Table 2.3-1 Organizational Evaluation

N . . PR TR A S M
T St
o--..-.‘~ V..
oW ot P

e .

DR -
S St
o L

e T W T e LT
PR s ' s et
B 4 PR

. EYENRE "

-,

CRITERION
MEDIUM
ERIPORR

BEST
WORST

nnn
— M

* Lowest Score is Best (Unweighted)

PRODUCT DIVISION

ENGINEERING
SOFTWARE QA
AFPRO

V&V

ORGANIZATION
SPO

.
W IR I

o e
- "-"’.".. * ..
<' - '-— ‘e .

IR NN

N R S PR
PRI AL 6N

...............

> - M . S APPSR R ERE RN N PP L LA SUUEATANEE I i Sl WA A S < Sut g W e Ny W LT, .
th\!):!\ " A ,\‘ln A'-'-(I.h~ -d{ .-\~\.-\s~\. a9 .--~-.-~._ ‘, .M Wx\ .-..-.W-..f ...- Yy ! ,-\...u, &-\\ s \I.. .fwu-.fh.- ! i _.4. -,-.- -..s..-. ..71- n-(rlvtﬁ &0 --...- .o-.-,

A

RN A - s i 9 B vn iy

~

TRUMVER LWL L

TRV

e e g 2t

a2 f

y metric

Provide qualt

data

RADC
DACS

V&V

Provide qualiity metric

evaluation

AFPRO

Indicates alternate source

Figure 2.3-4

A ..-!u--i.-~

TorLL,on
2 \‘:l‘

| I 4
A

Recommended Responsibilities and Relationships for the QM Monitoring Function

AR 3
WAL« D

2-30

Tty L e e e oy e o B I B L O T S e
L 22 0 uer man - gen dan-ghe 2 G ik "RE Yk 00 Ny “RAn A R I R S T T - . -

l."_l

.
a8

LA RS

.

.

Several assumptions were made for scoring. The first was that all criteria are

vy
oo e,

weighted equally; actually, however, technical capability and labor availability may be

P e e
. v .

-
s
s [N

overriding factors for selection. For technical capability, it was assumed that Product

1

Division Software QA groups are unlikely to be able to obtain people experienced in

both software engineering and QA to perform that job. For economy, it was assumed

Pl

L3
" .
-
LS
.

et

that any Air Force person (civilian or military) is a free resource for the SPO.
Otherwise, the SPO must pay for IV&V contractor services. Data availability scores
include the assumption that the IV&V contractor works for SPO Software Engineering
and that good communication channels are established. These assumptions may not be

valid in all situations.

The AFPRO received the lowest score and, therefore, was rated best. It is generally
recommended that the AFPRO perform data collection and analysis for the SPO.
When this cannot be negotiated, it is recommended that an IV&V contractor be
assigned this task. Although SPO Software Engineering and the IV&V contractor are
rated equally, the recommendation to use an IV&V contractor was made because of
better labor availability. It is recommended that a chart similar to the one shown in

Table 2.3-1 be developed early in a program.

A proposed DID, Software Quality Evaluation Report, is contained in Appendix C and
can be used to report data collection and analysis results to the software acquisition
manager. This feedback enables the manager to track progress, ensure that
requirements are being satisfied, and take corrective action when necessary. ¢ _4

Recommendations for responsible organizations and relationships for monitoring are

shown in Figure 2.3-4. We recommend that the Data and Analysis Center for Software
(DACS) at Rome be used as the data base for quality metrics information and that the
SPO provide a copy of the quality requirements and all metric data to DACS (e.g.,
provide a copy of the Software Quality Evaluation Report). This has the advantages of
providing one centralized location for all QM data and enabling access to all historical
data by any one product division. It also enables large-scale data analysis and

correlation to be performed on data from all product divisions. Any changes in QM

technology such as new factors, metrics, and worksheet formats should be

52

N

disseminated from a central point. This concept is illustrated in Figure 2.3-5.

2
2l

.« - - I N '
. P S T
4 ,‘."'.. . y
LA o « »
Letets ‘ B ,
e PR . .

,»\J'.‘A. ™~ -,.\ '.‘ '\"'

e e e e L ML P e e e e e e AN N R e E et el SalasLate

X\

!,
e

%

o5,

RLA

e

R
s 4

A C
e la

. .j- X

*

IO A
O

[%
T te-W 0

=

|

Framework Elements:

Factors
Criteria
Metrics
Metric Elements
Worksheets o Framework
Scoresheets Elements
e Historical [AF PRODUCT DIVISION
Data | AF PRODUCT DIVISION
DACS ATROME | AF PRODUCT DIVISION
e Store Data o Select Framework
. . Elements
¢ Validate Metrics .
e Gather Metric
e Enhance Data
Framework
Elements <4————— o Analyze Data =
& Quality
Require-
ments
e Actuals
(Data,
Ratings &
Moditica-
qm tions)
DATA
BASE

<~

e Metric
Data

PROJECT
PROJECT

PROJECT

Figure 2.3-5 Relationship between Product Divisions and DACS

L 3
’ ‘.-L ﬂ

P

]

ol k

.y .,
v

v

PRI

M N0l
.. " !‘.J'I
v. F) l. 0 [

T

DN

VT
.

R

The preceding paragraphs discuss government monitoring only, and the development

contractor was not mentioned. Because quality factor requirements are included as
contractual requirements, the development contractors must also monitor achieved
quality levels to show compliance. However, to ensure that data and reports received
by the SPO are unbiased, we recommend that the government independently monitor
achieved quality levels.

2.4 POTENTIAL BENEFITS AND PROBLEMS

This section discusses the potential benefits and problems associated with integrating
QM technology into the software acquisition management process and of using QM

technology during acquisition.
2.4.1 Benefits

Possible benefits of using QM technology include a higher quality end product, greater
emphasis on quality throughout the life cycle, better management control, and life-
cycle cost savings. A high-quality end product is possible because required quality
levels are specified quantitatively. There is little room for misinterpretation or for
undesirable results such as a highly efficient but unreliable and unmaintainable
product. The acquisition manager is assured that the end product is of the required
degree of quality. Also, other software requirements are considered at the same time
that quality requirements are being specified. This means that the quality
requirements should be reasonable and should not conflict with functional and
performance requirements (or vice versa), thereby increasing the likelihood that all
software requirements can be satisfied within allocated resources. In addition,
achieved quality levels are monitored throughout development providing increased
visibility for control of quality. Periodic application of metrics provides the
acquisition manager with adequate feedback about software development progress and
enables early redirection if necessary. Finally, evaluating specific low metric scores
provides an additional mechanism for detecting deficiencies and anomalies in
requirements, design, and code.

Life-cycle cost savings are possible for several reasons. Using metrics to detect

deficiencies and anomalies enables correction during development. Correction at this

LT
A
»

L4
7
4
o

.

S
.

A

'
AT
)

I«
J‘_"

'0 ‘. " "f .l ',' -,
TR o gy
ST R BT et |
RRACXRN

Bl

r‘l‘ﬁl" L 20 o St B0 0 s i maul D B Seh i jen Mgl Seisen i o it N e * Rise b Rie - Rint e =i -t R e ~RUr R e A I AR sa g da Ge Svn DA LOnLj taiBi RN duca b S TR Jihe i SAp [N bl
te)
.

time is less costly than during operation and maintenance. Also, it is possible to be
more precise about funding for quality. If adequate quality levels are achieved during

development, it is unnecessary to spend more effort in raising quality levels or in

~
.

developing a near-perfect product.

- -
LAy ay ny)

.

The greatest cost savings potential comes from having certain qualities actually built
into the software. For example, if system A has a high level of reusability built into

the software, then cost savings result from building system B reusing a portion of

-

system A software. These potential cost savings are available for other quality
factors such as flexibility, portability, interoperability, and expandability. Details for

considering cost are described in Section 4.0.

Other benefits can also be realized. For example, use of QM technology can provide
the acquisition manager an added assurance that the required degree of reliability is
achieved in the final product. This would be especially important in acquisitions

involving space applications or nuclear armaments.

2.4.2 Problems

There are potential technical and administrative problems when using quality metrics
in acquisitions; i.e., in integrating QM technology into the Air Force software
acquisition process. Problems could arise during one of the most important tasks, that

of maintaining a current QM technology baseline. Baseline changes could result from,

v
(&

for example, changes in quality factor ratings, new factor ratings being established,

E_ new metrics being established, and metrics being validated for new application areas.

::'.: Changes could originate from any product division using QM technology. Using DACS

t"; would minimize the risk of such problems as: multiple baselines in the product -
:j;:Z- divisions, duplication of validation efforts, and use of outdated information (e.g., ‘-':'_;:.
outdated ratings).

A potential problem could arise where subjective judgment is required in scoring some)

metrics. Two people gathering metric data from the same software products could

i

F-’ score the worksheets differently. This risk has been minimized by rewriting the O
;f':ff questions on the metric worksheets so that they are clear, simple, and understandable. -}_f-jj
- ‘ .) e e
5. Also, metric element explanations have been included for clarification. As more

. L
;'".: -.:_\.W

Iy
1

ke SN 20N YR SN
o b e e
£
e
CUNY
'

AR
- ,-4
s
B R A L A L, T T RS P _:"1
. .'-. - .'-‘-'-‘-'n-"-‘ Y ‘-'- -. .‘ . --‘n.h - .-- A\.p.-‘b.
e e e R e e e e e e e T e e
et T T e e ha Ny 'J‘" e etk et e G \.(.' '.--\h ,.'L_,_\"-
PP PR VL IS, PR LR VS T UL S 6 W, AT RS P TS PRS- A R)

o W R S b Gn i Wie b an Jhat hBe - Sie - 3 B " Aa 0 G~

historical information becomes available, it will be possible to do a reasonableness
check on worksheet data entries, based on previous data ranges. However, we
recommend that experienced personnel perform data collection and that education and

training be provided for personnel involved with QM technology.

Another potential problem might arise when attempting to automate portions of the
data gathering task through an automated measuring tool. This type of tool scans
source code and outputs statistics on the code (e.g., percentage of comments, number
of specific constructs). The scanner is language dependent and must be developed for

each language, but standardization on a language (e.g., Ada) will minimize cost.

Problems with organizational structures and manpower may be encountered when
implementing QM technology at the product divisions. Program offices do not have
QA divisions. QA in the program office is usually done by Engineering. In addition,
software QA organizations in the product divisions are relatively new. These
organizations are trying to define their role in the acquisition process and their
relationship to the program offices. Absence of a well-defined organizational
structure for software QA could lead to disagreements over assigning QM
responsibilities. Either organization could resist accepting responsibility for QM
functions because of staffing problems. Program offices are usually not fully staffed
with software engineers; to accept more responsibilities without additional personnel
would be difficult. Software QA organizations have small staffs and find it difficult to
hire qualified personnel. A person with experience in both software engineering and
QA is required, but few software engineers are interested in QA assignments,
Staffing problems should receive attention during implementation of QM technology in

the Air Force software acquisition process.

- e
P T T L
O IO N

A __'.;_ ‘ X
A N A R ALY SR SRS R
__.:‘..‘_.-._..ﬁ.-...:?;,{‘, o N SN AR
AEIPEME AL SO LY 4 s BRI IIUU RTINS . D S S €I U

3.0 QUALITY METRICS FRAMEWORK

This section describes elements of the software quality framework. Terminology and

concepts introduced in this Section are used throughout subsequent Sections.

The goals of quality metrics (QM) technology are to enable a software acquisition
manager to (1) specify the types and degrees of software qualities desired in the end
product and (2) predict end-product quality levels through measuring the degree of
those qualities present during development. The Rome Air Development Center
(RADC) quality program (see Sec. 1.1) has established a model for viewing software
quality. Figure 2.2-2 depicts this model, showing a hierarchical relationship between a

quality factor, criteria, and metrics. Criteria and metrics are factor attributes.

Quality factors (e.g., reliability, usability, correctness, and maintainability) are user-
oriented terms, each representing an aspect of software quality. Thirteen quality
factors are used to specify the types of qualities wanted in a particular software
product. Product environment and expected use affect emphasis. For example, if
human lives could be affected, integrity, reliability, correctness, verifiability, and
survivability would be emphasized. If the software is expected to have a long life

cycle, maintainability and expandability would be emphasized.

Criteria are software-oriented terms representing software characteristics. For
example, operability and training are criteria for usability. The degree to which these
characteristics are present in the software is an indication of the degree of presence

of an aspect of quality (i.e., a quality factor).

Metrics are software-oriented details of a characteristic (a criterion) of the software.
Each metric is defined by a number of metric elements. The metric elements enable
quantification of the degree of presence of criteria and, hence, factors. "Are all the
errors specified which are to be reported to the operator/user?" is an example metric

element question for the criterion operability (see worksheet 0, OP.1(2), App. A).

Using the methodology described in Section 4.0, the acquisition manager is responsible

for specifying needed quality factors by priority, with quality levels commensurate

U al el ol i o o g ia . b slie (-~ ey e et et e h el b G T AL e A St ot . Sl Db S B Al i

!
'

b

. [LA o o]
e RO
) s ¢ 0
ST P Lt
B N '_.-' . e
. o : :
PN - 0

Ty by !

,
s
'
Dl

Table 3.1-1

Software Quality Factor Definitions and Rating Formulas

ALQUIS TION CONTERN

QUALITY FACTOR

DEFINITION

RATING FORMULA

EFFIGENCY RECATIWVE EXTENT TO WHa{H ARESOURLE (S UTit 2ED (e STORAGE 1+ ACTUA RESOURCE LTIZATION
SPACE PROCESSING TIME COMMUNICATIO!N FIME) ALLOCATED RESOURCE UTILIZATION
INTEGRITY EXTENT TO WHICH THE SOF TWARE WiLL PERFGRM WITHOUT 1. ERROR
FAILURES DUE TO UNAUTHORIZED ACCESS TU THE (ODE ORDATA LINES OF CODE
WITHIN & SPECIFIED TIPAE PERIOD
PERFURMANCE RELIABILITY EXTENT TO WHICH THE SOFTWARE WiLL PERFORM WITHOUT ANY 1. ERRORS
FAILURES WITHIN A SPECIFIED TIME PERIOD UNES OF CODE
SURVIVABIITY EXTENT TO WHICH THE SOFTWARE WiLL PERFORM AND SUPPORT 1 ERRORS
CRITICAL FUNCTIONS WiTHOUT FAILURES WH Mt & SPECIFIED TIME LUNES OF CODE
FERIGD WHEN & PORTION OF THE SYSTEM IS INOFERABLE
USABILITY RELATIVE EFFORT FOR USING SOFTWARE (TRAINING AND 1. LABORDAYS TO USE
OPERATION) (e g FAMILIARIZATION INPUT PREFAKATION LABOR-YEARS TO Df VELOP
EXECUTION OUTPLTINTERPRETATION)
CORRECTNESS EXTENT TO WHICH THE SOF TWARE CONFORMS TO S 1. ERRORS
SPECIFICATIONS AND STANDARDS LINES OF CODE
DESIGN MAINTAINABILITY EASE OF EFFORT FOR LOCATING AND FIXING A SOFTWARE FAILURE 1. 01 {AVERAGE LABOR-DAYS TO Fix;
WITHIN A SPECIFIED TIME PERIOD
VERIFIABILTY RELATIVE EFFORT TO VERIFY THE SPECIFIED SOFTWARE QPERATION 1. ESEORT YO VERIFY
AND PERFORMANCE EFFORT TODEVELOP
XPANDABILITY RELATIVE EFFORT TO INCREASE THE SOF TWARE CAPABILITY OR 1 EFFORTTOEXPAND
PERFORMANCE BY ENHANCING CURRENT FUNCTIONS OR BY ADDING EFFORT TODEVELQP
tiE W FUNCTIONS OR DATA
FLEXIBILITY EASE OF EFFORT FOR CHANGING THE SOFTWARE A 1. GO05{AVERAGE LABOR-DAYS 10
FUNCTIONS ORDATA TOSATISFY GTHER REQUIREMET CHANGE)
ADLPTATION INTEROPERABILITY | RELATIVE EFFNRT TO COUPLE THE SOFTWARE OF ONE SYSTEM TO 1. EFFORY IO COUPLE

PORTABILITY

REUSABILITY

THE SOFTWARE OF ANQTHERSYSTEM

RELATIVE EFFORT TO TRANSPORT THE SOF TWARE FOR USE IN
ANOTHER ENVIRONMENT iNARDWARE (ONFIGURATION AND/OR
SOFTWARE SYSTEMENVIRONMENT)

RELAT(VE EFFORT TO CUNVERT A SOFTWARE (OMPONENT FOR USE
IN ANOTHER APPLILATIUN

EFFORT TODEVELOP

€FFOAT TO TRANSPORT
EFFORT TODEVELOP

EFFORT TOCONVERT

tFEORTTODEVE.OP

NOTE THE RATING vALUE RANGE S FROMO TO Y

IF THE

VALOE SLESS THAND THE RATING VALLE IS

ASSIGHED TO O

B als & e yhi e Mo i i ey Al L S-Sty " Sia e e A IR I I e Se. e IR IR M S Ml hdin"Stan S e i ~ah B S it

with cost consideration.. Factor requirements are provided as part of the software
requirements (along with operational, performance, and design requirements). This
enables the corresponding criteria and metrics to be identified and used to measure
the degree of preSence of desired qualities at key review points during development,
allowing periodic predictions of the quality level for the final product. Metric
worksheets and scoresheets help in applying the metrics and in determining metric

scores.
3.1 SOFTWARE QUALITY FACTORS

Thirteen software quality factors are identified in Table 2.2-1, with the user concern

that characterizes the need for each type of quality. Quality factors are shown

grouped under one of three acquisition concerns: performance, design, or adaptation. R

An acquisition manager specifying requirements for software will likely do so in a -_"_'~_~‘
DOD-STD-SDS format in four main areas: (1) software performance characteristics L
(performance), (2) software design and construction (design), (3) anticipated software H
expansion or reuse (adaptation), and (4) quality assurance (including quality metrics). ‘
The similarity of areas and acquisition concerns enables the acquisition manager to
easily identify and select quality factor categories and specific factors of interest. ; B
Quality criteria are similarly categorized (see Sec. 3.2); thus, selecting criteria and -'j-_'.:::l
metrics is simplified. J
3.1.1 Factor Definitions and Rating Formulas :
T
Quality factor definitions and factor rating formulas are shown in Table 3.1-1. Rating :j'-:;j:
formulas quantify user concerns for the final product. The formulas use three types of :T:_-‘_Z::
measurements: (1) number of errors per lines of code (2) effort to perform an action *—‘ﬁ
. and (3) utilization of resources. Ratings should fall in the range from zero to one. The _,
{{2'_ rating formula for reliability is one minus the number of errors per lines of code. For :'::.‘:'.::1
- example, if one error per 1,000 lines of code occur during a given time period (e.g., -
l‘. during operational testing and evaluation) the rating formula shows a reliability level
- of 0.999 (1-1/1,000 = 0.999).
o0
= During software development, metrics are applied to software products, and a metric
L! score is calculated for the appropriate factors. This metric score is an estimation (or

PR
P AP LY «,
LW S ¥ WV SR PR

W
o,
Q..
-,
!
-
=
»
o
hd

ory

LI

> S

- A M8,

PR

INTEROPERABILITY

PORTABILITY

REUSABILITY

APPLICATION/
PHASE INITIAL USE OF PRODUCT NEW USE OF PRODUCT
AQUISITION
CONCERN/ SOFTWARE OPERATIONALTESTING | PRODUCTION ANC SOFTWARE OPERATIONALTESTING | PRODUCTION AND
QUALITY FACTOR DEVELOPMENT AND EVALUATION OEPLOYMENT DEVELOPMENT ANO EVALUATION DEPLOYMENT
PERFORMANCE
ENC IR R f ~
RELIABLITY . o SAME AS FOR INITIAL
) o 9 USE. AS REQUIRED q
DESIGN - S
: < SAME AS FOR INITIAL >
VERIFIABILITY ! ’ " <
ADAPTATION

- -"-‘l 13

Wit b TRl

L]

= RATING ESTIMATION

& RATING ASSESSMENT

{AR) = AS REQUIRED

Figure 3.1-1 Rating Estimation and Rating Assessment Windows

prediction) of what the .quality level will be for the final product. Figure 3.1-1 C
indicates the timeframes during which rating values are estimated through metric t
scores (closed box) and the timeframes during which rating values can be assessed by ‘
using actual data and the rating formula (dotted box). For example, the rating value
for reliability is estimated by using metric scores during software development.
During operational testing and evaluation and during production and deployment,
. actual data on number of errors per lines of code become available to assess the rating
- and evaluate predictions made during development. Exact correlations between
metric scores and rating values have not been established. Research has only shown
L. that higher metric scores during development result in higher quality end products.
8 Table 3.1-2 shows a range of values for each rating formula that might occur waen
using actual data (e.g., during production and deployment) to assess rating values. The
values shown are hypothetical.

The following paragraphs describe the factors and rating formulas in each acquisition
concern category.

. Performance. Performance quality factors deal both with the ability of the software 1’_ 'j’_'- ."',:
to function and with error occurrences that affect software functioning. Low quality
levels predict poor software performance. These quality factors are efficiency, _-
integrity, reliability, survivability, and usability. -

Efficiency deals with utilization of a resource. The rating formula for efficiency is O
in terms of actual utilization of a resource and budgeted allocation for utilization.
For example, if a unit is budgeted for 10% available memory and actually uses 7%, the
rating formula shows an efficiency level of 0.3 (1 - 0.07/0.10 = 0.3).

Integrity deals with software security failures due to unauthorized access. The rating
formula for integrity is in terms of number of integrity-related software errors
occuring during a given time (e.g., during operational testing and evaluation) and total
number of executable lines of source code. This formula is similar to the formula for

h.'

reliability; the difference is that reliability is concerned with all software errors,
and integrity is concerned only with the subset of errors that affect integrity. For
example, if three integrity-related errors per 10,000 lines of code occurred during
operational testing and evaluation, the rating formula shows an integrity level »f
0.9997 (1 - 1/10,000 = 0.9997).

a6 L XA, (Y,

ALAN TRy I - e LT - -V . e A N g C it i = TSI IO Y
) el
Ul ‘

L -
'._:4 KR ‘-«.'
:\:: -‘:.:-.'
Ul \._ﬂ.
o~ E-c_q
-\: i.‘\-:.'q
4 2 xS
.f_’\ A ‘.."_J:
oA Table 3.1-2 Quality Factor Ratings T
.$. ‘:\"‘E
) Quality factor Rating formula Rating information Yo
L R
. -.‘_J
;'~ Efficiency 1. Actual utilization Value 0.1 0.3 05 o
-: Allocated utilization % utilization 90% 70% 50%
- Integrity 1 Errors Value 0.9995 0.9997 0.9999
Lines of code Errors/LOC 5/10,000 | 3/10,000 | 1/10.000
‘:" Reliability 1. Errors Value 0.995 0.997 0.999
a ; Lines of code Errors/LOC 5/1,000 | 3/1,000 | 1/1.000
” Survivability 1. Errors Value 0.9995 0.9997 0.9999
o Lines of code Errors/LOC 5/10.000 | 3/10.000 | 1/10.000
- ' Usability 1. Labor-days to use Value 0.5 0.7 09
Labor-years to develop Days/years SN0 6/20 107100
.- Correctness 1- Errors Value 0.9995 0.9997 | 09999
b - Lines of code Errors/LOC $/10.000 | 3/10,000 | 1/10,000
- Maintainability 1- 0.1 (average labor- Yaiue 08 09 095
e davs to fix Average labor-days 20 10 05
o Venfiability 1. Effortto verify Value 04 0.5 0.6
Effort to develop % effort 60% S50% 40%
}_ Expandability 1. Effortto exoand Value 0.8 09 0.95
Lo Effort to develop % effort 20% 10% 5%
- Flexibility 1 0.05 (average labor- VYalue 08 nag qo9s
- days to change) Average labor-days 40 20 10
Val
o Interoperability 1 Effort to couple alue 09 0.95 0.99
) Effort to develop % effort 10 5 1
Value
.. o Portability i Effort to transport — 09 0.95 0.99
.?‘.‘! Effort to develop “ eftort 10 5 1
o Effort to convert Value 04 0.6 08

N Reusability 1- -

Effort to develop % effort 60 40 20

e

\
[§
o
L]
o
av,
@.
R&
.:,-‘ 3 -6
)

)
’
3
v
»
[}
0
'
3
.
'
[
'
[y
s,
=
i
s
T
B
z
z
v
)

.,.,-
Yy

s
el

H e
R -
A ﬁ}‘ Reliability concerns any software failure. The rating formula for reliability is in
Mo terms of total number of software errors occurring during a specified time and total 'f::

»
v

A

number of executable lines of source code. For example, if three errors per 1,000
lines of code occurred during operational testing and evaluation, the rating formula f_-:.j-,
shows a reliability level of 0.997 (1 - 3/1,000 = 0.997). L

The concern with survivability is that software continue to perform (e.g., in a

degraded mode) even when a portion of the system has failed. The rating formula for :-f:-
survivability is in terms of number of survivability-related errors (the subset of errors -;Z'_'-
that affect survivability) occurring during a specified time and total number of \\
executable lines of source code. This formula is similar to the formula for reliability.
Usability deals with relative effort involved in learning about and using software. The ~\
rating formula for usability is in terms of average effort to use software (to train for ,
using it and to operate it) and original development effort. This formula considers size ,""l’
of the software system in rating usability. It is recommended that effort to use be TN
expressed in labor-days and effort for original development be expressed in \
labor-years to maintain a scoring range consistent with that of other factors. For ::.'.'{.-
example, if 10 labor-days were required for training on a system that required 100 -
labor-years to develop, the rating formula shows a wusability level of ::}‘l
0.9 (1 - 10/100 = 0.9); and if five labor-days were required for training on a system ‘__:
that required 10 labor-years to develop, the rating formula shows a usability level of .'..'
0.5 (1 -5/10 = 0.5). s
T
Design. Design quality factors deal mainly with software failure and correction. Low :\
quality levels usually result in repeating a portion of the development process (e.g., :‘\}::C

redesign, recode, reverify); hence the term design. The factors are correctness,

I‘: maintainability, and verifiability.)
: Correctness deals with the extent to which software design and implementation
L;' conform to specifications and standards. Criteria of correctness (completeness,
[" consistency, and traceability) deal exclusively with design and documentation formats.
'k:,'-'ﬁ Under the three criteria there are no metrics dealing with content material affecting
Lj.'-;'. software operation or performance. The rating formula for correctness is in terms of
ii number of specifications-related and standards-related errors that occur after formal
’.
. Ef
»y 3-7

=

vy 00 & 14

e

- - - COall ot SRRt I A BB~ TR -y D Oafs Salty AT T e A T e e e el

release of the specificdations and standards and total number of executable lines of
source code. This formula is also similar to the formula for reliability; the difference
is that correctness is concerned only with that subset of errors related to violations of

specified requirements and nonconformance to standards.

Maintainability is concerned with ease of effort in locating and fixing software

failures. The rating formula for maintainability is in terms of average number of
labor-days to locate and fix an error within a specified time (e.g., during production
and deployment). For example, if an average of 0.5 labor-days were required to locate
and fix errors during production and deployment, the rating formula shows a
maintainability level of 0.95 (1 - (0.1 x 0.5) = 0.95).

Verifiability deals with software design characteristics affecting the effort to verify
software operation and performance. The rating formula for verifiability is in terms
of effort to verify software operation and performance and original development
effort. This formula is similar to the adaptation, effort-ratio formulas. For example,
if 40% of the development effort is spent reviewing and testing software, the rating
formula shows a verifiability level of 0.6 (1 - 0.40/1.00 = 0.6).

Adaptation. These quality factors deal mainly with using software beyond its original
requirements, such as extending or expanding capabilities and adapting for use in
another application or in a new environment. Low quality levels predict relatively
high costs for new software use. Quality factors are expandability, flexibility,
interoperability, portability, and reusability.

Expandability deals with relative effort in increasing software capabilities or
performance. The rating formula for expandability is in terms of effort to increase
software capability and performance and original development effort. For example, if
five labor-months were spent enhancing software performance for software that
orignally took 100 labor-months to develop, the rating formula shows an expandability
level of 0.95 (1 - 5/100 = 0.95).

Flexibility deals with ease of effort in changing software to accommodate changes in
requirements. The rating formula for flexibility is in terms of average effort to

change software to satisfy other (i.e., new or modified) requirements within a

-
S
'

sl
:,-8 . _a

[T b

4
»
L
&
4
.
<
b
ANy |

i)

-
¥

P) -
a5 o
PR T A TR
R s e
. N .

& .

.
. r *

[[D T Y
IR AR

e

.
A
"

N
g

kr\ﬁ'," ‘\"‘ ‘-'
":{)?;ZJ.J

’

I‘ITV'
i

PR
Py et g A

LRI
AR M)
e e e
PR IR

1

AT

E’-’;’;".I

g

¢ v
.

i

£
.

LA A
Fa l.' R
Pl lﬂqu. y

.y

K

.
¥

P
. .
- ’
P

PPN

PR

specified time. For example, if an average of one labor-day was required to modify

software functioning during operational testing and evaluation, the rating formula
shows a flexibility level of 0.95 (1 - (0.05 x 1) = 0.95).

Interoperability is concerned with relative effort in coupling software of one system to
software of one or more other systems. The rating formula for interoperability is in
terms of effort to couple and original development effort and is similar to the formula
for expandability.

Portability deals with relative effort involved in transporting software to another
environment (e.g., different host processor, operating system, executive). The rating
formula for portability is in terms of effort to transport software for use in another
environment and original development effort and is similar to the formula for
expandability.

Reusability is concerned with relative effort for converting a portion of software for
use in another application. The rating formula for reusability is in terms of effort to
convert software for use in another application and original development effort and is
similar to the formula for expandability.

If adaptation effort is greater than original development effort, the effort-ratio
formulas will yield a quality level value less than zero. In this case, the quality level
value is assigned to zero. (This situation is considered unlikely because it would

probably be less expensive to develop a new product than to adapt an existing one.)
3.1.2 Quality Factor Interrelationships
Relationships exist among quality factors; some relationships are synergistic and

others conflicting. Specifying requirements for more than one type of quality for a
product can possibly have either a beneficial or an adverse effect on cost to provide

the quality. Factor relationships and relative cost to provide are discussed in Section
u.o.

N T g S e
NI AR L0 JORIN

Ay

-) s N

AT
) v

AR

v’

gy o
by ;,'_v,'

250

4 Ny

LA A

4y f

[

[l.l v
e
RN
I lr

"o -
. &
2 i :
STy Ay [‘, .

’ ":” Py
o

L) l‘
-y
YL
&

—y
13

£ A
&&

o>
il

.
(4
4

AL PLIS
L,
f g8 0
.’4’..'__"

oo
L
/l
Pl

L]

, YT

‘ f

o 1,8,
P '

..
e
.'
P
& A .2 4 8.9

]
v

e ete”
1]

LR,
LR

P

aca
L

2,

LA ARAL
h
o !

PN) ’
1‘ \
S¢S
Table 3.2-1 Software Quality Factors and Criteria
, ACQUISITION CONCERN PERFORMANCE DESIGN ADAPTATION
I
-) 3 ' R s (ufctm|v]eE £ ' [L]
'y a FACTOR/ACRONYM sl ntelolslolalelx cinlol e
o C F Tl v }lr|afnr | R{e|E riRrRJu
tel Q [3 ! v 8 R N [A X E T S
4 L clG| a | | £ T fF|]nN] R | afa
!] a e jvicvpc]|al o|les|o|es B
H £ ! 1 A 1 T I B ' 3 1 i
KA] Nl Tl ulse T NIN]B8 |8 L] € L L
- T C Y t ' Y E A ' L} ! R | '
| Y T L s |8 | vt Tla]T T
(o] Y] 3 i [} ! Y] Y Y
N T [I O I ¢]
e Y i vy {v L
. C T 1
.o [¢) 4 T
L) ¢ "
£ i
R CRITERION/ACRONYM 3 1 RIsjulcim]v]e £) Pl R Bt
N Fla]lir]v]sftriale]lx]x{rfio}lu e
e.‘,'\'. k
~
£
> ACCURACY ac x G
A € ANOMALY MANAGEMENT am X X }-.‘.~
o R AUTONOMY Ay X !:- 4
-t & DISTRIBUTEDNESS o x Sk
. R EFFECTIVENESS - COMMUNICATION EC X)
™ EFFECTIVENESS - PROCESSING EP X
& a EFFECTIVENESS - STORAGE €5 X
¢ OPERABILITY op x
¢ RECONFIGURABILITY RE X
SYSTEM ACCESSIBILITY $5 x
TRAINING ™ X
0
£ COMPLETENESS cp X
H CONSISTENCY cs x | x
! TRACEABILITY T X
) ¢ VISIBILITY vs x | x
-"
., APPLICATION INDEPENDENCE ap x
e a AUGMENTABILITY ar X
> 0 COMMONALITY L x
o A DOCUMENT ACCESSIBILITY 0o x
T " FUNCTIONAL OVERLAP FO x
. a FUNCTIONAL SCOPE F§ x
s T GENERALITY GE x | x x
<|3 INDEPENDENCE 10 X | x X
N SYSTEM CLARITY ST X
SYSTEM COMPATIBILITY 3% x
VIRTUALITY VR X
13 MODULARITY MO X x [x b Jx §fx }x |x
N SELF-DESCRIPTIVENESS 5D x I x P x|x x | x
€ SIMPLICITY sI x x | x x| x x
R
a
L
>
h :_1
A L)
<
3-10 N,
“w

e & & 0 T A T e T T e T e T T

3.2 SOFTWARE QUALITY CRITERIA

Criteria are software-oriented terms representing software characteristics. Software
quality criteria can be grouped under the same three aquisition concerns as quality
factors: performance, design, and adaptation. Table 3.2-1 shows the relationship of
criteria to quality factors. Four categories for criteria are shown: performance,

design, adaptation, and general. Each criterion is an attribute of one or more quality

!

»

factors. The criteria in the first three categories are solely attributes of factors

.

[

et
A

within the same acquisition concern (i.e., performance, design, and adaptation).

t

%
s .\.

-
-
™

Criteria in the fourth category are factor attributes within more than one acquisition

concern.

Criteria and factors within each category are listed alphabetically for easy
referencing. Alphabetizing by name or by acronym gives the same sequence. Criteria

definitions are listed in Table 3.2-2.

3.3 SOFTWARE QUALITY METRICS

Metrics are software-oriented details of a software characteristic (a criterion). Each
f:,,: criterion consists of one or more metrics. Each metric is an attribute of only one
::}. criterion. Table 3.3-1 lists the name and acronym of each criterion (in alphabetical
. order) and the name and acronym of each metric that is an attribute of that criterion.
" Metric acronyms are acronym extensions of the parent criterion. For example, the
- acronym for the criterion commonality is CL; the acronym for the three metric
- attributes are CL.1, CL.2, and CL.3.
P Each metric is defined by one or more metric elements. Metric elements are detailed
j:'.: questions applied to software products; answers to them enable quantification of
'.:-'j metrics and of the parent criterion and factor. Metric elements are designated by
acronym only (no name) and are listed on the metric worksheets. Acronym designation
o is an extension of the parent metric acronym. For example, the 14 metric element —
o acronyms for the metric CL.1 are CL.1 (1) through CL.1 (14). _‘::
% o
= o

PR i A QO S

g
1.8 At

v 'ue,

v

Table 3.2-2

PR R L A e e e A Raajine i ¥ie S an hen Jhn SR dat bl e Rl i

Quality Criteria Definitions

i T =2l i "

ACQ-
Uisi-
TION
CON- | CRITERION ACRONYM DEFINITION
CERN-
ACCURACY AC 1 e Thosecnaracteristics of sottware which provige the required pDrecision n
caiculations and outouts
ANOMALY MANAGEMENT AM | @ Those cnaracteristics of software which provide for continuity of cperations
unoer and recovery from non-nominali conditions
AUTONOMY AU | @ Those cnaracteristics of software which determine its non-depenaency on
p interfaces and funcrions
3 DISTRIBUTEDNESS Dt | @ Those cnaracteristics of software which detemrine the degree to wnich software
funcuons are geograpnically or logically separated within tne system
R EFFECTIVENESS-COMM EC | @ Those characterisucs of the software wnicn provige for minimum ytinzation of
F communications resources in perfarming tunctions
0 EFFECTIVENESS-PROCESSING EP | ® Those characteristics of the software wnicn provige for mimimum ytihzation of
processing resources in performing functions.
ICI EFFECTIVENESS-STORAGE ES | ® Those charactenstics of the software which provige for minimum ytilization of
storage resources.
A QPERABILITY OP | ® Those characteristics of software which determine operations and procedures
N concerned with operation of software and which provioe useful inputs ang
c outputs which can be assimilated
RECONFIGURABILITY RE | @ Those characternistics of software which provide for continuity of system
E operation when one or more Processors, storage units, or communication links
faiis
SYSTEM ACCESSIBILITY SS | e Those charanenstécs of software which provide for controi and auatit of access to
the software and data
TRAINING N e Those characteristics of software which provide transition from current operation
and provige nitial tamiiarization
D COMPLETENESS CP | @ Those characteristics of software wnich provide full impiementation of the
E functions reguired
CONSISTENCY CS | ® Those characterstics of software which provide for uniiorm des:gn and
S ympiementuon technigues and Notation
| TRACEABILITY TC | ® Thosecharacteristics of software which provide a threaa of origin from the
G imorementation to the requirements with respect to the soecifiea geveiopment
N envelooe and operational environment
viSIBILITY VS | e Thosecnaracteristics of software which provide status monitoring of tne
aevelopment and operation
APPLICATION INDEPENDENCE AP | ® Those characteristics of software which detemrnine its nonaependency on
catabase system mucrocode. computer architecture, ana atgorithms
AUGMENTABILITY AT | @ Those characteristics of software which provide for expansion of capabiiity for
tunctions and data
COMMONALITY CL | ® Those characteristics of software which provide for the use of interface standards
A for protocols. routines. and data representations
D DOCUMENT ACCESSIBILITY DO | e Those charane'mucs of software which provides for easy access to software and
selective use of 1ts components
': FUNCTIONAL OVERLAP FO | ® Those characteristics of software which provide common functions to both
systems
T FUNCTIONAL SCOPE FS | ® Thosecharacteristics of software which provide commonality of functions among
apphications
? GENERALITY FE | @ Those cnaracteristics of software which provide breadth to the functions
performed with respect to the application
| INDEPENDENCE ID | ® Those characteristics of software which determine its non-dependency on
software environment (computing system, operating system utdities, inDut,
0 9 g sy
N outout routines, libranes)
SYSTEM CLARITY ST | ® Those charactenstics of software whaik orovide for clear description of program
structure 1n 3 non-complex.and understandable manner
SYSTEM COMPATIBILITY SY | @ Those characteristics of software wnich provide the haroware. software, and
communication compatibility of two systems
VIRTUALITY VR | @ Those cnaracteristics of software which present a system that does not require
user knowledge of the pnysical, logical or 100010CICal cnaractensucs
y 9 c
MODULARITY MO | @ Thosecnaracteristics of software whnich provige a structure of higniy conesive
G components with optimum coupling sy
my '
5 SELF-DESCRIPTIVENESS SD { @ Thosecnaracteristics of software which provide expianation of the
impiementation of functions
€ SIMPLICITY S | @ Those characteristics of software which provide for definition and
R impiementation of functions in the Most noncompiex and understandable
A manner
L

-u'r-. *.:' ~i

e -,
“xn' N

r

P

. A,

_J

Table 3.3-1 Quality Metrics Summary
CRITERION METRIC
NAME ACRONYM NAME ACRONYM
ACCURACY AC ACCURACY CHECKLIST AC.
ANOMALY AM ERROR TOLERANCE/CONTROL AM.1
MANAGEMENT IMPROPER INPUT DATA AM.2
COMPUTATIONAL FAILURES AM3
HARDWARE FAULTS AM 4
DEVICE ERRORS AMS
COMMUNICATIONS ERRORS AM 6
NODE/COMMUNICATION FAILURES AM.7
APPLICATION AP DATA BASE MANAGEMENT IMPLEMENTATION AP
INDEPENDENCE INDEPENDENCE
} DATASTRUCTURE ap2
ARCHITECTURE STANDARDIZATION AF 3
MICROCODE INDEPENDENCE AP 4
FUNCTIONAL INDEPENDENCE AP S
AUGMENTABILITY AT DATA STORAGE EXPANSION AT
COMPUTATION EXTENSIBILITY AT2
CHANNEL EXTENSIBILITY AT3
DESIGN EXTENSIBIUTY AT A4
AUTONOMY AU INTERFACE COMPLEXITY AU
SELF-SUFFICIENCY AU.2
COMMONALITY CL COMMUNICATIONS COMMONALITY cLA
DATA COMMONALITY cL.2
COMMON VOCABULARY L3
COMPLETENESS Ccp COMPLETENESSCHECKLIST CP 1
CONSISTENCY Ccs PROCEDURE CONSISTENCY [« !
DATA CONSISTENCY cs2
OISTRIBUTEDNESS Di DESIGN STRUCTURE Dt
DOCUMENT DO ACCESS TO DOCUMENTATION DO
ACCESSIBILITY WELL-STRUCTURED DOCUMENTATION DO 2
EFFECTIVENESS- £C COMMUNICATION EFFECTIVENESS MEASURE ECH
COMMUNICATION
ErFECTIVENESS- EP PROCESSING EFFECTIVENESS MEASURE EPY
PROCESSING DATA USAGE EFFECTIVENESS MEASURE EP2
EFFECTIVENESS-STORAGE 3 STORAGE EFFECTIVENESS MEASURE ES.1
FUNCTIONAL OVERLAP O FUNCTIONAL OVERLAP CHECKLIST FOA
FUNCTIONALSCOPE FS FUNCTION SPECIFICITY FS.1
FUNCTION COMMONALITY FS.2
FUNCTION SELECTIVE USABILITY FS.3
GENERALITY GE UNIT REFERENCING GEA
UNIT IMPLEMENTATION GE.2
INDEPENDENCE 1D SOFTWARE INDEPENDENCE FROMSYSTEM D1
MACHINE INDEPENDENCE 102
MODULARITY MO MODULAR IMPLEMENTATION MO Y
MODULAR DESIGN MO 2
OPERABILITY oP QPERABILITY CHECKLIST OP1
USER INPUT COMMUNICATIVENESS QP2
USER QUTPUT COMMUNICATIVENESS orP3
RECONFIGURABILITY RE RESTRUCTURE CHECKLIST RE.
SELF-DESCRIPTIVENESS SO QUANTITY OF COMMENTS sD1
EFFECTIVENESS OF COMMENTS sD2
DESCRIPTIVENESS OF LANGUAGE SD.3
SIMPLICITY St DESIGN STRUCTURE Si
STRUCTURED LANGUAGE OR PREPROCESSOR S12
DATA AND CONTROL FLOW COMPLEXITY Si3
CODING SIMPLICITY S 4
SPECIFICITY SIS
HALSTEAD'S LEVEL OF DIFFICULTY MEASURE Sié6

o Ty
RN
v e K
2 Ta

1".'-{-tl

2

*

AN RERTNE foud

Table 3.3-1 Quality Metrics Summary (continued)

CRITERION METRIC
NAME ACRONYM NAME ACRONYM
SYSTEM ACCESSIBILITY SS ACCESS CONTROL $S1
ACCESS AUDIT $$.2
SYSTEM CLARITY ST INTERFACE COMPLEXITY ST
PROGRAM FLOW COMPLEXITY ST.2
APPLICATION FUNCTIONAL COMPLEXITY ST.3
COMMUNICATION COMPLEXITY $T 4
STRUCTURE CLARITY STS
SYSTEM COMPATIBILITY sY COMMUNICATION COMPATIBILITY SY 1
DATA COMPATIBILITY sY 2
HARDWARE COMPATIBILITY sy 3
SOFTWARE COMPATIBILITY Sy a
DOCUMENTATION FOROTHERSYSTEM SYS
TRACEABILITY TC CROSS REFERENCE C
TRAINING ™ TRAINING CHECKLIST TN
VIRTUALITY VR SYSTEM/DATAINDEPENDENCE VR 1
VISIBILITY Vs UNIT TESTING S
INTEGRATION TESTING vs.2
CSCI TESTING vs3

3.4 METRIC WORKSHEETS

Metric worksheets are contained in Appendix A. The worksheets contain metric
elements as questions. Software products (specifications, documents, and source
listings) are used as source information to answer questions on worksheets; answers are
then translated into metric element scores (yes = 1, no = 0, and a formula answer
results in a score from 0 to 1). This enables scoring of the parent metric, criterion,

and factor and results in a quality level indication for the product.

Seven different worksheets are applied in different development phases. Table 3.4-1
indicates the timeframe during an acquisition life-cycle phase when a worksheet is
used, shows the software level of abstraction at which the worksheet is applied, and

lists key terminology used within the worksheet.

Worksheet 0 is applied to products of system/software requirements analysis. The
worksheet is applied at the system level. (For large systems, software may not be a
discernible component in the design with separate requirements at the system level.

In this case, worksheet 0 is applied at the system segment level.)

Worksheet 1 is applied to products of software requirements analysis. A separate

worksheet is used for each CSCL

Worksheet 2 is applied to products of preliminary design. A separate worksheet is
used for each CSCIL

Worksheets 3A and 3B are applied to products of detailed design. A separate
worksheet 3A is used for each CSCI. A separate worksheet 3B is used for each unit of
a CSCI. Worksheets 3A and 3B are applied together; answers on 3B worksheets for
CSCI units are used in scoring the 3A worksheet for that CSCI.

Worksheets 4A and 4B are applied to products of code and unit testing. Worksheets 4A
and 4B are applied in the same manner as 3A and 3B. A separate worksheet 4A is used

for each CSCI, and a separate worksheet 4B is used for each CSCI unit.

Table 3.4-1 Metric Worksheet/Life-Cycle Correlation

Life-Cycle
Phase/ Demonstration
Activity & validation Full-Scale Development (FSD)
System/ Software
Sofiware Requirements | Preliminary | Detailed Coding & (414 CSCl - Level System
Application Level/ Requirements Analysis Design Design Unit Testing | Integration & Testing integration &
Terminology Analysis Tesung Testing
System |® System r__....--___----____.
® System Metric |
function Worksheet 1 !
® CSQ 0 | 1
| !
t 1
® CSC1 Metric 1)
csa ® Software Worksheet) 1
function 1 | 1
[(Selected metric questions are 1
e CSCI 1 reapplied during the integration 1
CsCt | e Top-level CSC wMi';:‘ . 1 and testing phases as indicated in the |
or 25 ee | quality attribute correlation table in 1
| Appendix A)]
e CSQ : '
® Top-leve! CSC Metric Metric !
s | e Lower-leve! Worksheet Worksheet | |
csC 3A 4A 1 [}
® Unit | |
] 1
UNIT |® Unit Metric Metric | |
Worksheet Worksheet |]
38 48 | i
Y Y Y T T T T Ty
3-16 .
bt
[

Y
PR R PO e N
- . - - - - - - " - - . - - - . - . s .
CR PR T R T K . .
RN N I W ST W N W W el DRI THATE, VN VLY W

IR
l_l'

For the remainder of the development cycle, selected metric questions are reapplied
b as indicated in the quality attribute correlation Table in Appendix A.

Metric worksheets are designed to be applied at specific levels (e.g., CSCIl, unit).
e Worksheets can be applied at other levels; however, some questions may not be
= applicable. For example, if worksheet 1 were applied to a CSCI function, question

CP.1(6) should be deleted or reworded because it only applies at the CSCI level.

Metric worksheets are designed to be applied to software development products
j:f,‘: identified in DOD-STD-SDS. The minimum product set is listed by software

development phase in Table 3.4-2. Each product is identified by title and by DID

- number. Information from the entire set of products for a particular phase is needed -
- as source material to answer metric questions on the worksheet applicable to that
phase. It is not necessary to specify the complete product set for each acquisition, ;-'

\ only to have equivalent information available to answer worksheet questions. For
example, when acquiring a small system, information regarding the QA plan and Mﬂ]
7

software standards may be included as part of the software development plan.

' 3.5 FACTOR SCORESHEETS

A ot
A,

SN

-

Factor scoresheets are contained in Appendix B. There are 13 factor scoresheets, one

oo for each software quality factor. Scoresheets are used for translating information at
! the metric element level on the worksheets into a quality level score for a quality
. factor. Each scoresheet has blanks for the factor and for all attributes of that factor
":j:. (i.e., criteria, metrics, and metric elements). Worksheet information is transferred to
- the scoresheets at the metric element level. "Yes" answers are scored as 1l; "no"
' answers are scored as 0; and numeric answers resulting from formulas are transferred
':‘:, directly to scoresheets (scoring range from 0 to 1). Scores are then calculated for the
-;_f;'. parent metrics, criteria, and factor according to the hierarchical (attribute)
:j:f:' relationship indicated on the scoresheet.
[)
)

&

! :l“_ :55—-".

1
L

rl
>

o |

k™

.
< ‘-‘

b
-

. 4
\:1 .

v
iy

Table 3.4-2 Software Development Products

il

"
AN
N Phase/Product Title Applicable DID
[t:: System/Software Requirements Analysis
System/Segment Specification DI-S-X101
r J Softwate Development Plan DI-A-X103
; Preliminary Software Requirements Specification DI-E-X107
: Operational Concept Document DI-M-X 125
o Software Quality Assurance Plan DI-R-X105
: Software Problem/Change Report DI-E-X106
- Software Standards and Procedures Manual DI-M-X109
¥ :‘ Prefiminary Interface Requirements Specification DI-£-X108
iR
1 - Software Requirements Analysis
v Software Requirements Specification DI-E-X107
! interface Requirements Specification OI-E-X108
_:' Preliminary Design
} :‘ Software Top-Level Design Document DI-E-X110
{ 3 Software Test Plan DI-T-X116
‘ Preliminary Software User’s Manual DI-M-X121
: Preliminary Computer System Operator's Manual DI-M-X120
.
- Detailed Design
:’ Software Detailed Design Document Di-E-X111
-3 Software Test Description DI-T-X117
e Data Base Design Document DI-E-X113
I Interface Design Document DH-E-X112
: Coding and Unit Testing
b Source Code/Listings (Appendix)
Preliminary Software Test Procedure DI-T-X118
4
:' CSC Integration and Testing
-:. Software Test Procedure DI-T-X118
4 CSCl-Level Testing
Software Product Specification DI-E-X114
:' Software Test Report(s) DI-T-X119
. Software User's Manual DI-M-X121
- Computer System Operator's Manual DI-M-X120
! . .
. System integration and Testing
N Software Product Specification DI-E-X114
- Software Test Report(s) DI-T-X119
g Software User's Manual Di-M-X121
; Computer System Operator's Manual DI-M-X120
2 S
¢ 3-18 i
NN

A

<

’

e

4.0 SOFTWARE QUALITY SPECIFICATION METHODOLOGY

This section describes a methodology for determining and specifying software quality
requirements for command and control applications. The methodology includes
procedures for determining and specifying quality factor requirements, techniques for
mak.ing quantifiable tradeoffs among quality factors, techniques for relating quality
levels to cost over the software life cycle, and procedures for analyzing quality

measurement data.

Methodology Overview. Specifying software quality requirements is part of a larger
process for using quality metrics in software acquisition management. Figure 4.0-1
shows this process in two major parts: software quality specification, including
assessment of compliance with requirements, and software quality evaluation
(measurement of achieved quality levels). This document, the Software Quality
Specification Guidebook, provides guidance for specification. The Software Quality

Evaluation Guidebook provides guidance for evaluation.

In Section 2.0, two quality metrics functions—specification and monitoring—were
described. Specification includes identifying and detailing quality requirements and
monitoring includes gathering and reducing data, comparing results with requirements,
and taking corrective action if necessary. Section 4.0 groups these functional activities
into two slightly different categories—specification and evaluation—to enable separating
the guidebooks for personnel who will be performing different functions. Software
quality specification, as shown in Figure 4.0-1, includes identifying and specifying
requirements and assessing compliance with those requirements since these are the
responsibility of System Program Office (SPO) personnel. Results of compliance
assessment are used to initiate corrective action. Software quality evaluation includes
only data collection and analysis and generation of the Software Quality Evaluation
Report since these are the responsibility of the development contractor or an
independent verification and validation (IV&V) contractor (or an Air Force organization,
as is discussed in Sec. 2.3).

The process begins early in the system life cycle—usually during system demonstration
and validation. We assume that a description of the nature of the system and system

needs or requirements exists. This description could be a statement of work or a draft

4-1

s TR T AT e TR LT VL AR e S ORI AR LR 2Ll SR AL LA ol ok
-‘:.-
- ~' .
a
5 o
Y Rt
- .' ..
> IS Ot
i F oy
o SRRt
L9 AR
!]
T
N .
-
"
\ “'
i)
)
-P-,'
5%
W,
o , {AVAILABLE FOR FORMAL
- ‘ REVIEW PROCESS)
A - y
P
o SOFTWARE QUALITY COMPLIANCE _
e, SPECIFICATION | ___, ASSESS COMPLIANCE —®| VaRATIONS K
b GUIDEBOOK WITH REQUIREMENTS :
1
~ ’ l
LA 2 |
S prosmemoososooo- 1 :
L o SPECIFY SOFTWARE ' SYSTEM !
K ; K —p | QUALITY REQUIREMENTS > REQUIREMENTS | |
! SYSTEMNEEDS ! | SPECIFICATION __; :
RNl ' ' T
s L : .- !
£ A \\ "” { *
j Y b SOFTWARE QUALITY SPECIFICATION IO, SR -
- 1] [)
a | SYSTEM/ISOFTWARE |
- | DEVELOPMENT |
Lo . ANDREVIEW .
. l """""" 'y
o APPLY SOFTWARE fo N
b QUALITY METRICS | SYSTEM/SOFTWARE !
| PRODUCTS !
- SOFTWARE QUALITY 1 PRSP g
.,-\ EVALUATION Meaa””
,-E GUIDEBOOK v
.
N ASSESS PRODUCT SOFTWARE QUALITY
N QUALITY LEVELS = EVALUATION
L+ REPORT
)
! -1 SOFTWARE QUALITY EVALUATION
ot
-."".
row
-"
d‘ -
1 -"_’- ;;':L
- oo IS .
T Figure 4.0-1 Software Quality Specification and Evaluation Process
o o
_-}':'- ;,:-'

v *
A AU SN
I I TN 2]

i) e e e LN - “ - EC it YA G B gl It AL BN IV B AN AL NS B Sl L e S Sibl S DA £ - uhd-nbl ol

system specification and is the primary basis for identifying software quality factor
requirements. A series of procedural steps is performed to determine specific software
quality needs and to specify quality requirements. Steps include polling groups such as
the Air Force using command and the Air Force Logistics Command (AFLC) in order to
provide a comprehensive set of operational and support quality requirements from a
quality factor point of view. These steps could be performed by the SPO or the

development contractor or through awarding a separate contract.

Software quality requirements are entered into the system requirements specification
and are treated as contractual obligations (just the same as technical requirements). As
the system contractor proceeds with development, quality requirements from the system
requirements specification are allocated to lower level specifications and finally
assigned to units within the software detailed design document in a manner similar to
that for other requirements. This requirements flow is shown in Figure 4.0-2. Each
time during the cycle that development products are released (usually at major review
points such as system design review (SDR), software specification review (SSR),
preliminary design review (PDR), and critical design review (CDR)), quality metrics, in
the form of metric worksheets, are applied to the products. Raw data are then used to
calculate scores indicating quality level achieved for each quality factor, and these

scores are compared to specified requirements.

Application of metrics and scoring of achieved product quality levels are performed by
the development contractor to show compliance with quality requirements. It is
anticipated that product evaluation will also be performed in parallel by another group
such as an IV&V team, the AFPRO, SPO Software Engineering, or Product Division
Software Quality Assurance, as is discussed in Section 2.3. Data collection and analysis
results are documented in a Software Quality Evaluation Report (see App. C). This
report is reviewed separately at major review points. The report is included in the
review package released before the review date. The SPO uses these results to assess
compliance with quality requirements and (1) approves or disapproves of compliance
variations at the review and/or (2) respecifies quality requirements and ensures that
changes are reflected in the system requirements specification.

Use of the Methodology and Guidebooks. The methodology and guidebooks were designed
primarily for use on projects during which quality requirements are specified early in the

1

L o R T
" v ...'4'-'
ot .

¥ SR LG OTRNY

bt

|

- r ey a% e i L) e v Bt B Ui S - N . e
a ey
o e
::-;, J"‘}
i _—
- . .-‘ »|
" M
Ly ..\
Q) o
Iy "
A\l A
.‘: . [
O
15 SRR SOR SSR PDR COR EQUIVALENT ;.-";‘)-“'
I < SPECIFICATION ey
‘.'-_ < AV 4 V AV LEVEUTVPE _\-,"_"
LI -.ﬁ
oy (MIL-STD-490) E‘:., \
<. 2
SOFTWARE A
ouaUTY Y neot:rzzmms
REQUIREMENTS OECIHICATION ALLOCATION OF QUALITY
REQUIREMENTS TO SYSTEM
. ‘ SEGMENTS
a:". J B-1
. * SYSTEM
- ——— SEGMENT
- 1 SPECIFICATION ALLOCATION OF QUALITY REQUIREMENTS
-) TO SOFTWARE AND HARDWARE Ci's
i \
* el '— --------- - B-5
N ! HARDWARE | SOFTWARE
- E REQUIREMENTS ! REQUIREMENTS
o ! SPECIFICATION _ SPECIFICATION ALLOCATION OF QUALITY
.. \ e REQUIREMENTS TO
- ~---— { SOFTWARE COMPONENTS (WITHIN CSCI'S)
N SOFTWARE TOF- <s
LEVEL DESIGN
DOCUMENT ASSIGNMENT OF
] QUALITY
> REQUIREMENTS TO
\ SRR = SYSTEM REQUIREMENTS REVIEW) UNITS cs
' SOR= SYSTEM DESIGN REVIEW SOFTWARE
SSR = SOFTWARE SPECIFICATION REVIEW DETAILED DESIGN
POR= PRELIMINARY DESIGN REVIEW DOCUMENT
CDR= CRITICAL DESIGN REVIEW

i * a SEPARATE SPECIFICATION NOT ALWAYS USED

Figure 4.0-2 Flow of Software Quality Requirements

Y - ‘l"
RS
A KN

-

. s Pars _'-'
Siebestrieiny

L

2

o life cycle and achieved quality levels are evaluated periodically during development as

‘ ' was depicted in Figure 1.4-1. The methodology and guidebooks can also be used outside

) the life-cycle context to evaluate particular products such as a specification, design

:x::: document, source code, or proposal. The purpose might be to evaluate reliability or

I:f maintainability of an operational product to determine if it is suitable for an application,

:3{ to evaluate and compare quality levels of two products for purchasing, or to determine
reusability of an operational product as an aid in determining adaptation costs for a new
‘5 application. The purpose might also be to evaluate quality aspects of new-business
'.:: proposals or system specifications to help determine a competitive contract award.

NN

. The methodology is similar regardless of context. Select important factors, criteria, and
:::-;f metrics. Select appropriate worksheets. Collect data and analyze results. Factor
~ selection should be simplified for applications outside the life-cycle context because it is
‘:h-ilf unlikely that factor cost trades would be performed; however, it is very important that
factor interrelationships still be considered to avoid misinterpreting factor scores
\-* (explanation in Sec. 4.1.3). Criteria and metrics selections follow factor selection and
\ should consider environmental and application particulars.

J Selecting appropriate worksheets requires care to ensure desired results. In using the .
,-jﬁ;l: methodology for a new project with distinct development phases and reviews, a set of \‘
; '-;;I products is available at each review point. The metric worksheets are designed to be j
:-':AZ;- applied to these products. The products assumed to exist at the end of each software -_‘_:
o development phase are identified by title and data item description (DID) number in *

“' Table 3.4-2. To use the worksheets outside this life-cycle context, the product being by
.:-‘,,Q evaluated should be matched as closely as possible to products identified in Table 3.4-2,
?*'::f and then the corresponding worksheets can be selected. For example, the technical
; ‘V portion of a proposal might correspond closest to a system and/or system segment o
"FE specification or to a software requirements specification. Worksheet 0 and/or 1 would
'{-;:f be chosen and appropriate questions selected. When the source code is available for an
: operational product, worksheets 4#A and 4B would be used. If the detailed design ‘___J
‘-._' documentation were available, worksheets 3A and 3B would also be used. Data bt
g collection and analysis results can be reported using the Software Quality Evaluation _\",
; Report (see App. C). :
o]
o by
L ASAN
o S
o 4-5 wi
g d
G -\.
:‘;_:_.:..‘: AN R AT T T T ;‘ >

Y -anmoadd gl gt g geiiiopag gt pedh pre SO gAs L AR S B Rt S [(S Sl S, . ! RIS Ll .‘.--rﬂ._.\.
R F\ " .-
- W 8"
N S0
* PO
. -.'_n-'.h
A
» t;:::_}"
- \ L'.»\‘_‘.._
*,‘:‘ %.:_.'- -
1) K . -~
i
RIS
.‘s.".-\
RS
Mgty
~
“»
ot
)
-y SPECIFY SOFTWARE QUALITY REQUIREMENTS
COMPLIANCE S—_’
A VARIATIONS
- SELECT AND
SPECIFY
QUALITY
i pememeeenas ceaeen FACTORS
. ! H
o) { SYSTEM ! >
~ } NEEDS !
- ' pmemmd S/W QUALITY FACTOR REQUIREMENTS
E ‘e’ pocmccemaeaaeen
N SELECT AND H 2
K. | " seeciey : SYSTEM
- > QuAuTy * REQUIREMENTS |
§ CRITERIA i SPECIFICATION__;
5 Y et
0 R
. SOFTWARE
- ALITY
- vs?:?némnou o QUALITY CRITIRIA REQUIREMENTS
. GUIDEBOQ
" SELECT AND
o QUALIFY
= > QUALITY
METRICS
1 METRIC EVALUATION BASES

'. {

SPO INTERFACES

L LR R RS

A S g

Figure 4.0-3 Procedures for Specifying Software Quality Requirements

ERLLITAT NN |y

-
b DS W DA |

AERE
ettt
« A_ae

'
.

o~ o - P——p—Y
‘v ! ll " l‘ l. !‘ 1) M e %
. LS

O
AR I

1t
»

CHR LSS -

H
[}

Specification Procedural Overview. Software quality specification is divided into two \5}:::
separate processes (as is shown in Fig. 4.0-1): specify software quality requirements and :\:{
assess compliance with requirements. The procedures for each of these are shown in ;" .

Figures 4.0-3 and 4.0-4 and are arranged in chronological sequence—factors, criteria, and k"

metrics—reflecting the three levels of detail of the hierarchical quality model.

Sections 4.1, 4.2, and 4.3 describe the detailed procedural steps for specifying software
quality requirements. The steps are organized under three procedures (as is shown in

Fig. 4.0-3): (1) select and specify quality factors, (2) select and specify quality criteria,
and (3) select and qualify quality metrics. These procedures may all be performed at one
time if enough details are known to be able to work with the criteria and metrics.
Procedures may also be performed at different points in time but must be performed
sequentially. That is, factors must be selected first, then criteria, then metrics. Also, it
is recommended that the procedures be performed more than once; working through the
procedures to a greater level of detail will often affect initial assumptions or decisions.
The procedures only aid in a decision-making process for which there are no right
answers, only answers best meeting user and system needs within cost and schedule
constraints. Section 4.4 describes the procedural steps for assessing compliance with
requirements (see Fig. 4.0-4).

4.1 SELECT AND SPECIFY QUALITY FACTORS

This procedure consists of four steps:

a. Identify functions (step 1).
b. Assign quality factors and goals (step 2).
c. Consider interrelationships (step 3).

d. Consider costs (step 4).

Steps 1 and 2 establish the quality goals; steps 3 and 4 consider the feasibility of
achieving those goals. In the first step, each function which is supported by software and
which will have separate quality requirements is identified. In step 2, quality factors are
assigned to each separate function, and initial quality goals are established for each
factor. In step 3, factor interrelationships (among the factors assigned to one function)
are examined, and possible effects on quality goals are explored. In the fourth step,

B g et e L S RN I NN A

" :- _\’:...‘n-
MwT

“\ . Py) N
s_ﬁ_-‘." '-;.»'&:Z-,}'My» Wby

’ 3

. I.“‘
DS
2 el
o e

s

A

.

1
4
gL Y

()
[
""J

e
e ————————————————————————

ASSESS COMPLIANCE WITH REQUIREMENTS

REVIEW
REQUIREMENTS
KOFTWARE QUALITY AN

EVALUATION

EVALUATION FORMULAS

REPORT

REVIEW
FACTOR
SCORES

DISCREPANCIES/
RECOMMENDATIONS
SOFTWARE COMPLIANCE
QUALITY VARIATIONS
SPECIFICATION

GUIDEBOO

REVIEW
CRITERIA
SCORES

REVIEW METRIC
AND METRIC
ELEMENT
SCORES

A
~

SPECIFY SOFTWARE QUALITY REQUIREMENTS

Figure 4.0-4 Procedures for Assessing Compliance with Requirements

X " " ~ ra Rt A Larsecaarss Bach ar Scbibetaarbach et AL b A R NELELE SIS B Sl R S
i

factor life-cycle costs and cost variations due to interrelationships are examined, and

possible effects on quality goals are considered.
4.1.1 Identify Functions (Step 1)

Step 1 of this procedure is to identify each function which is supported by software and

which will have separate quality requirements.

Different system functions, and software supporting those functions, will likely have
different quality needs. For example, a mission-dependent function should be more
flexible (to accommodate a change in mission needs) than one that is not. The system
description should be examined to identify all functions supported by software so that
separate quality requirements can be specified for each. System-level functions are
distinct operations performed by the system such as surveillance, identification, weapon
assignment, communications, and guidance. Table 4.1.1-1 identifies an example
command and control system and lists pertinent characteristics along with five system-

level functions: surveillance and identification, threat evaluation, weapons assignment

and control, battlestaff management, and communications. (This same system is used as

the example throughout this procedure.)

All five functions are supported by software, and quality factor requirements for these
functions can be allocated to operational software supporting them later in the life cycle
as software becomes more well-defined. However, to obtain a complete set of quality
requirements for the software, functions that are unique to software or that have
separate quality needs should also be identified. By examining the system description,
and with some knowledge of software development for command and control systems,
these functions can be identified. The example system has four software-unique
functions, as identified in Table 4.1.1-1: man-machine interface, executive, integrated
test function, and mission training. Software supporting the man-machine interface is
usually separated functionally for software development because it has unique

performance and quality requirements associated with a human interface. Quality

requirements should also be considered separately. Executive software interfaces

operational software with computing hardware and hardware interfaces and is treated

separately. Software supporting integrated (real-time) testing monitors system

component operation and is treated separately. Mission training software is required to s

run in real time, using portions of the operational system, and is treated separately.

..--_,)- 'J'

"y “'i-' . J = e o » B .
o $: -" J‘Lf, 1'- - .‘.n_ > S v K i R e K3 Tt R
3 &F I A o SR ORI T ORI Y O Y I P o

RIS S e ot N AN Bt G S B W e B AR A I VAL SRR g S SN a0). A g S T D g ghd e~ it s RS M N B - n it o S i e e S e

SO

¥ :‘. r:—:;.-::
o]
o - . v

b Table 4.1.1-1 Characteristics and Functions for Example System
o o

.; SYSTEM: Airborne Radar System :

LIFE CYCLE: 15-20 years

i

x'a
P 4
VS

COMPUTING SYSTEM: Centralized, Redundant Processors

2 B
Pl e’

SYSTEM FUNCTIONS:

R ® Surveillance and Identification*

- ® Threat Evaluation
® WeaponsAssignment/Control* "
J_:.Z;j ® Battlestaff Management

- ® Communications* ~_..;f;.‘-_

s SOFTWARE - UNIQUE FUNCTIONS:: e
" o
L ® Man-Machine Interface ,i'-::
e &
. - ® Executive* ';'“"'

P~ ® Integrated Test Function e,
‘ ::".; \"
i ® Mission Training T
e LS
-".:-‘ N
LI b >
..L-_- * = Function has external communicationsinterface R
AN RS
'_:\n, ’t.-_::

@

1-
P

s

- e
..)
- ~
AN RO
Pl |_,< -
- .
I “--" .
.« Sal™
'« '.- O .
. Dt
N AL M
S “e
.
e L
-"_q H -'!.-'
% r
S LNt
-7 4-10 o
- -

o

<
"

I

i
el

LI AR

4.1.2 Assign Quality Factors and Goals (Step 2)

In step 2, quality factors are assigned to each function supported by software (identified
in step 1), and initial quality goals are established for each factor. Five areas are
explored in accomplishing step 2: command and control quality concerns, system quality
factors, quality requirements survey, complementary quality factors, and quality goals

assignment.
4.1.2.1 Command and Control Quality Concerns

There are 13 quality factors, as defined in Section 3.0. Each function identified in the
previous step can be assigned any one or more of these factors. Decisions should be
made as to which qualities are needed for each function. System descriptions are likely
to have vague software quality requirements. These procedures are written as though
the system description has not addressed specific software quality requirements or has
not addressed them comprehensively. Therefore, in examining the system description,
judgment should be exercised in assigning the most appropriate factors to each function.

The following information can be helpful.

Table 4.1.2,-1 lists typical command and control functions and software quality factors
likely to be important for each function. These quality factors may or may not be
important for a specific system and a specific application. Other quality factors may be
important because of performance requirements or design constraints. For example,
space, weight, or power constraints on the computing system may place emphasis on
more efficient software. Other quality factors may be important because of basic
characteristics of the application and or software environment. Table 4.1.2.-2 lists some
application and environment characteristics and corresponding software quality factors

likely to be important.
4.1.2.2 System Quality Factors

Some system descriptions contain requirements for system-level qualities such as
availability, reliability, safety, transportability, and interchangeability. Those
system-level quality requirements affecting system and software-unique functions

identified in the previous step should be identified in terms of software quality factors.

[t
- 'j
,«_.J

Table 4.1.2-1 Important S/W Quality Factors for Major C2 Applications

Sw
QUALITY
FACTOR

COMMAND AND CONTROL
FUNCTION

<AZmM~A-TmTmm

<«—A—mOMm-AZ -~

<—H—rr—@p=-rmxn

L —ATCTEAPC T CRCV

<—A-r—@bvCc

VAWM Z 4mmoDnOn

<HA-F-®@paz->Z

<-A—rFr—@p—TM—DM

<~—r—@wpgZpOxXm™

L =-HTrrTm T XMmr N

XA @PIMOVQIMAZ ™

<= "@mp4BOT

<A—r—@pwCcmD

INTELLIGENCE
ELECTRONIC WARFARE (T)
INTELLIGENCE DATA EXPLOITATION (T)
TARGET ACQUISITION (T)

> x X

SURVEILLANCE AND IDENTIFICATION
DATA COLLECTION/REDUCTION (S)
DYNAMIC GRAPHIC DISPLAY(S)
TARGET RECOGNITION(S)

THREAT DETECTION/IDENTIFICATION(S)
THREAT DISPLAY (S)
THREAT RESPONSE AIDS(S)

b 8 & 5 8 4

2 X XK XK X

e ATTACK ASSESSMENT AND TACTICAL WARNING
- - ATTACK & RESPONSE ASSESSMENT(S)
f - ATTACK WARNING (T)

b 4

DAMAGE ASSESSMENT
DAMAGE DATA COLLECTION/REPORTING(S)

SINGLE-INTEGRATED-OPERATIONS-PLAN
SIOP OPTION SELECTION/EXECUTION(S)
CONTROL AIDS(T)

DECISION AIDS(T)

DYNAMIC TARGETING/RETARGETING(S)
TACTICAL PLANNING (T)

WEAPON CONTROWSELECTION(S)

x X >

xx X X

XXX X

STRIKE ASSESSMENT
STRIKE DATA COLLECTION/REPORTING(S)

x

>

FORCE MANAGEMENT/RECONSTITUTION
BATTLE FIELD MANAGEMENT(T)
DYNAMIC FORCE MANAGEMENT (S)

ISR
.

NOTE (S) = STRATEGIC, (T) = TACTICAL

Bl o B
" oy

St .
S, et

Ay a)
e

:
" -

. v
vy
e
o
e
s 'y e

12

BRI
A LS Ly Y

.
atas

2

'
R SO

L)
3
pr

P N

4
)

R G PR

)

Y
e
S W)

-)

b

H . 1
Featalatidie

. v'll":v
AN

T l-l +
.

. - .

e

P
LN

R
WA Y N

r
i

-..,v.
PP AR
B A

Faree N

N
Aeadhddnd

N

S

.,
AN

| e

[

o,

e d
a

)

i
r]
a

=

o

3
Sl M 3

v YIY ¥
)
-‘ :-..’t “v‘, -

. >
o e

N
B
.
.
A
F -

~

L o s oraloca won 8 s @ b BN dC R Mot L chih - uip B sl uemn Mt AsTh L SR i AR

Table 4.1.2-2 Examples of Application/Environment Characteristics and

LS B RN T e Bt DA A ot Th SRt S

Related Software Quality Factors

APPLICATION/ENVIRONMENT

CHARACTERISTICS SOFTWARE QUALITY FACTORS

Human lives affected Integrity
Reliability
Correctness
Verifiability
Survivability

Long life cycle Maintainability
Expandability

Experimental system or high rate Fiexibility

of change

Experimental technology in Portability

hardwaredesign

Many changes over life cycle Fiexibility
Reusability
Expandability

Real time application Efficiency
Reliability
Correctness

On-board computer application Efficiency
Reliability
Correctness
Survivability

Processing of classified integrity

information

interrelated systems Interoperability

1k

I“l
- ¥
LN

AR SSE ae an a0
LA 4

.-,, <
.".‘ AR L N

3, gty] . ;
» . G - P,
i - Bt e

A a3, g e
Y P

’

7
R

"Ar

)

o

Ay
X0
I»

t]
)
g
'."
.]

,‘
(S B
s
L
[

A
s

b

P

[N

LU
)
s e

T "
l‘"l “ .
{lf‘—r

)

Table 4.1.2-3 System/Software Quality Factor Correlation

ACQUISITION PERFORMANCE DESIGN ADAPTATION

CONCERN/
QUALITY
FACTOR

cw

SYSTEM
QUALITY
FACTOR

<==—ROM—2 —
L A== PNC

<AZ2mMm—M—"T7m
<—=r—P>r—00v
<L =—{=r—0RPpwnCmmon

L—A——@WP~rmu
A= L~
.wmmzﬂnmxxon
L<—A=r—OpZ-Dp—2Z->»Z
<= —0OPp—n—-20mg
L= =PPOZP VXM
== =@ —=Xmrm
<L =r—@P>omuvOom-Z—

x

AVAILABILITY

EFFICIENCY

INTEGRITY

RELIABILITY

SAFETY

SURVIVABILITY

TRANSPORTABILITY

USABILITY

CORRECTNESS

MAINTAINABILITY

VERIFIABILITY

EXPANDABILITY

FLEXIBILITY

(]
P

. e NI W
g5 4 ’,

‘e’

. .

INTERCHANGEABILITY

INTEROPERABILITY

REUSABILITY

X POSITIVE RELATIONSHIP
-— APPLICATION DEPENDENT

pifairadeiy Sl il a av's

——

Y™

T

Table #4.1.2.-3 shows the correlation between 16 system quality factors and the 13
software quality factors. System quality factors are described in RADC-TR-83-175,
volume I, Software Quality Measurement for Distributed Systems-Final Report. The
following paragraphs discuss software quality factors likely to be important if a high
quality rating has been specified for one of the system quality factors. (An example of

critical function is one that would be selected for degraded mode operation.)

System availability is the portion of total operational time that the system performs or
supports critical functions. High system availability implies high software reliability,
survivability, and maintainability. High quality ratings for these factors ensure that the
system will seldom fail, critical functions will continue to be performed in the event of a

failure, and the fault will be quickly corrected.

System efficiency is the relative extent to which resources are utilized. High system
efficiency implies both high software efficiency and high software usability. Software
usability directly affects operator effectiveness and efficiency, and the system operator

is a factor in measuring system efficiency.

System integrity is the extent to which the system will perform without failure due to
unauthorized access to the system or system information. High system integrity implies
high software integrity. In most applications, system integrity depends on the software

and continued software functioning. In these applications software survivability would

also impact system integrity.

System reliability is the extent to which the system will perform without any failure.
High system reliability implies high software reliability, correctness, and integrity. Both
software reliability and correctness contribute to the ability of the system to perform
intended functions. High software integrity ensures that system reliability will not be
adversely affected by accidental or deliberate unauthorized access to the software or

data.

System safety is the extent to which the system will perform without causing damage or
physical injury. High system safety implies high software correctness, reliability,
integrity, and verifiability. High ratings for these factors ensure that the system will

perform as specified, will seldom fail, and is secure from unauthorized access.

DAL/ S Yl i M Sl e It A I e vt il S el adsl piel bl o vl ' B0 (8" e el S £ *Su it dlh sl s o i)

- "
§ System survivability is the extent to which the system will perform and support critical &%3
\ functions without failure when a portion of the system is inoperable. High system g%’l
e survivability implies component and communication path redundancy and complex 1__4
:{'- anomaly management. Complex anomaly management places emphasis on high software sy
j:Ej survivability. Emphasis is also placed on high software interoperability for redundancy e
::j:. and increased communications and, for networks with a variety of users, on high ‘*\
by software integrity because of increased vulnerability to unauthorized access. S
o 0
r_i:; System transportability is the ease of effort for physically reloacting the system. High __:-"
f:'-_j system transportability implies low power, light weight, and compactness. These result ;::::::
f’ in constraints on the computing system such as limited storage, emphasis on firmware e
o rather than software, limited facilities for data entry and display, and wireless 'ﬁ-j
' communication. These constraints place emphasis on software efficiency, integrity, and ;:i
"I»_Z usability. Maintenance costs for the software of a transportable system are naturally ;,j
high. This in turn places emphasis on software reliability to reduce probability of td
" failure. M
N
System usability is the relative effort for training or system operation. High system “t",g
. usability implies high software usability. In applications for which accuracy and .
_:j?. precision affect the amount of time and effort to operate the system, the quality
::‘: criteria accuracy would also be emphasized. (Accuracy is an attribute of the quality
\w factor reliability.)

_;:"‘. System correctness is the extent to which the system conforms to its specifications and
‘::'.'_‘- standards. High system correctness implies both high software correctness and high
software verifiability., The ability to verify software operation and performance against

2 specifications and mission objectives aids in ensuring overall system correctness.

' : ,:_:.:.
System maintainability is the ease of effort for locating and fixing a system failure. :'h'-
' : High system maintainability is enhanced by software that is easily maintainable and by E,;
. software that aids in fault detection and isolation. This places emphasis on high el
; : software maintainability and on survivability to continue fault detection and isolation ‘_S‘
Yol even when a portion of the system is inoperable. Y
o R
g S
o) -
e o
o o
EE. 4-16 ;f::

¥
]z

ol gt ghd rR aen g i g d s sk M aed mde R o
.
~

-

e
System verifiability is the relative effort to verify the specified system operation and
performance. High system verifiability implies component modularity, function -
modularity, fault isolation, high visibility of system operation through instrumentation _._,__‘
and system displays, and diagnostic aids such as self-test capabilities. This places "”“‘r‘-
emphasis on high software verifiability and maintainability. Also, high software surviv- :
ability would enable functions such as instrumentation, displays, and self-test to continue
when a portion of the system is inoperable. .a—'.f.i

System expandability is the relative effort to increase system cap§bility or performance
by enhancing current functions or adding new functions. High system expandability
implies component and function generality and modularity and implies spare system
capacity. This emphasizes high software expandability, hjgh software flexibility to
incorporate enhancements apd new functions, and high software verifiability to test

changes. For a capacity-limited system, high software efficiency would be emphasized.
’ »

System flexibility is the ease of effort for changing system missions, functions, or data
to satisfy oti’xer requirements. High system flexibility implies modular system
components and generality of component functions. This requires flexible software that
is modular and general and emphasizes change verification. In addition to high flexibility
and verifiability, high integrity would also be emphasized when modifying functions,

missions, or data could possibly compromise security.

System interchangeability is the relative effort to transform a system component for use

in another environment. High system interchangeability implies that a family of systems
(or subsystems) has components that are similar in function and that may be substituted
for each other. This implies that there may be a need to reuse software from system to

system (high reusability); to transfer software to another system configuration (high

portability); or to modify software missions, functions, or data (high flexibility).

:1
; O
i NS
- s g . » '.\ --.1
A System interoperability is the relative effort to couple the system to another system.
' B High system interoperability implies commonality of interface protocols, routines, and g
557“ data representations. It also implies compatibility of interface equipment. This places ',ﬁ: "
'_‘::_ L :»
t:-j'.; emphasis on the nigh software interoperability and the ability to reuse software on F)
;‘;E;Zj:j interfacing systems (high reusability). For some applications it may be necessary to o
3! o

transfer software to an interfacing system (high portability).

‘1"
y]

»

A

-
Y

’l
T
a7,
P

'I>
A

-~

i
-
~

-
s

iy

D
*ute
¥

Table 4.1.2-4 Software Quality Requirements Survey

L4
!
.
INSTRUCTIONS: I'C -
T
The 13 software quality factors listed below represent aspects of software quality P'.E
which are recognized as being important for certain software products. Use the -
attached Software Quality Factor Identification Form; list the system functions X
which are supported by software and the software-unique functions; and, for 3 {
each function, indicate whether you consider each factor to be very important -‘;_';
(goal of "E” for excellent quality), important (goal of "G” for good quality), SR
somewhat important (goal of "A” for average quality), or either not important oG
- " L.
(blank) or not applicable (blank or “N/A"). '
-_—— - - | 7:"'\.‘
" a0
ACQUISITION CONCERN QUALITY FACTOR DEFINITION ";";;-,.
B
~f 3
EFFICIENCY RELATIVE EXTENT TO WHICH A RESOURCE 1S UTILIZED (1 E., ":J'ff
STORAGE SPACE PROCESSING TIME. COMMUNICATION TIME) F:*?’ g
INTEGRITY EXTENT TO WHICH THE SOFTWARE WiLL PERFORM WITHOUT ‘;"“ '
FAILURES DUE TO UNAUTHORIZED ACCESS TO THE CODE OR r
DATA WITHIN A SPECIFIED TIME PERIOD [
RELIABILITY EXTENT TO WHICH THE SOFTWARE WILL PERFORM WITHOUT L :: 4
PERFORMANCE ANY FAILURES WITHIN A SPECIFIED TIME PERIOD i ({1
SURVIVABILITY EXTENT TO WHICH THE SOFTWARE WILL PERFORM AND et
SUPPORT CRITICAL FUNCTIONS WITHOUT FAILURES WITHIN A PN
SPECIFIED TIME PERIOD WHEN A PORTION OF THE SYSTEM IS .{-: X
INOPERABLE &
USABILITY RELATIVE EFFORT FOR TRAINING OR SOFTWARE OPERATION
(e.g.. FAMILIARIZATION. INPUT PREPARATIUN, EXECUTION,
OUTPUTINTERPRETATION)
CORRECTNESS EXTENT TO WHICH THE SOFTWARE CONFORMS TOITS
SPECIFICATIONS AND STANDARDS
DESIGN MAINTAINABILITY EASE OF EFFORT FOR LOCATING AND FIXING A SOFTWARE
FAILURE WITHIN A SPECIFIED TIME PERIOD
VERIFIABILITY RELATIVE EFFORT TO VERIFY THE SPECIFIED SOFTWARE
OPERATION AND PERFORMANCE
EXPANDABILITY RELATIVE EFFORY TO INCREASE THE SOFTWARE CAPABILITY OR
PERFORMANCE BY ENHANCING CURRENT FUNCTIONS OR BY
ADDING NEW FUNCTIONS OR DATA
FLEXIBILITY EASE OF EFFORT FOR CHANGING THE SOFTWARE MISSIONS,
FUNCTIONS. OR DATA TO SATISFY OTHER REQUIREMENTS
ADAPTATION 'INTEROPERABILITY RELATIVE EFFORT TO COUPLE THE SOFTWARE OF ONE SYSTEM
TO THE SOFTWARE OF ANOTHER SYSTEM
PORTABILITY RELATIVE EFFORT TO TRANSPORT THE SOFTWARE FORUSE IN
ANQTHER ENVIRCNMENT (HARDWARE CONFIGURATION
AND/OR SOFTWARE SYSTEM ENVIRONMENT)
REUSABILITY RELATIVE EFFORT TO CONVERT A SOFTWARE COMPONENT FOR
USE IN ANOTHER APPLICATION
4-18
By e M % % e T -,.‘_ 'a" -‘.‘- e e - w .",“ ,‘-’,"- f.."p.'.'-.‘ -".\7.‘ b R R) ".- e U < "_’t' LR
;2}:‘.".‘, -Eni AN R ",(‘...,?J;. '-1_ ') w ¢" “.‘i'._-"{\ .l L.
B A A%

Vo Al hed - A
»I:b;-;"b-‘ L SASENNLIA LY R BTk S A & 00 MR ST, B Rl S M S i At M ~ Dt N i AR ARC S S i e B M= i R

[3

A . .

EYS

v

's;.

'E System reusability is the relative effort to convert a system component for use in

:.- another application. High system reusability implies modularity of components and

. modularity and specificity of functions. This eases the tasks of selection and removal

_,“j for reuse. It also implies that functions and components are general enough to be

‘.' tailored to a new application. This places emphasis on high software reusability, high

’ software flexibility to accommodate changes, and high software verifiability to test

’ changes.

¥

:;?T 4.1.2.3 Quality Requirements Survey

T

. System descriptions are often vague with respect to software quality requirements. :
¥ Surveys can aid in defining specific software quality requirements. Tables 4.1.2-4 and ,'5-'*-"‘
4.1.2-5 are example survey forms. Table 4.1.2-4 gives instructions for completing the ::'.;::f;
j;j,:} survey and lists and defines the 13 software quality factors. Table 4.1.2-5 enables the '_L:j;::_
respondent to identify each system or software-unique function supported by the
::l software and to enter a quality factor level of importance—one for each of the 13 factors R
-’ for each of the identified functions. ,’
o e
We recommend that the survey response be accompanied by a letter justifying each e
Lj- quality factor entry by referencing a system description paragraph or other requirements
_ documentation (e.g., MIL-STD-152] or DOD-STD-SDS) or by explaining the entry. \
, Organizations responsible for software quality requirements and those potentially ;::"j::
) affected by low quality products should be surveyed. At a minimum, the Air Force using
o command and AFLC should be surveyed. 85
N BN
f‘(Entries in Table 4.1.2-5 represent survey results for the example system (see Tbl :::I??
" 4.1.1-1). Survey respondents were familiar with the system description. ..--
o T
- 4.1.2.4 Complementary Quality Factors ::.:j;
E:f': :'.\
.' This section discusses the effects of low quality levels among factors. Section 4.1.3 il
j' discusses the effects of high quality among factors. ;:
:":3-5 R
% X
.)
3
N "
325 RO
N "_:.

~»-(".u"’
a s ¥-¥
£
|
o
(Ye]

Y i
Pl

R P T TN WP e e e, 4, afi M Al

A

Y

& a T

ey e N8 ¥ S

Table 4.1.2-5 Software Quality Factor Identification Form - Survey Results

w
-

ASAR AR NIt gt it i et b i 2P RS a0y A

PERFORMANCE DESIGN ADAPTATION
E | R|s |Jufc|MIVIETLTF |,y [P [R
FINJEJuUlS|OJA]E XL N[O |E
F{T|L{R[A]R IN :i f; i T r\g lsJ
I e |1 |v]B]Rr E
ngxmce cf{ajalr v JE{T[FIN]L [R]A A
FACTOR r R8s |[v|Lt]ciAjrL |D]|B}lO|B |B
E |1 Il A !' TV IALJAL [P (I 1
N M L B N N 8 8 L E b L
Al | 1 o
SYSTEM OR SOFTWARE - SHY LU I el L] v Al [T
UNIQUE Y | S] 1 | Y s lY Y
FUNCTION 1 EN R H
Y 1 Ylvy L
T 1
Y T
NZA Y |NA{NA
SURVEILLANCE AND IDENTIFICATION e le e elelelclelele
THREAT EVALUATION G|ALE E]JEJE|G G
WEAPONS ASSIGNMENT /CONTROL G|E|E E|JE|({E}IG]IG})G|G
BATTLESTAFF MANAGEMENT alala elelcla G
COMMUNICATIONS E|E | £ ELE|E G
MAN-MACHINE INTERFACE ElE telela GG
EXECUTIVE e lele G G
INTEGRATED TEST FUNCTION E E|G E
MISSION TRAINING E E G E G

NOTE FOR GOAL ENTRIES.
£ » EXCELLENT
G = GOOD

A = AVERAGE
BLANK 0f N/A =
NOT IMPORTANT OR NOT
APPLICABLE

Four quality factors are complementary to most other factors and should be considered
when choosing important factors. These are reliability, correctness, maintainability, and
verifiability, as shown in Table 4.1.2-6. Low quality levels for these factors can
adversely effect measured (i.e., by factor rating formula) ‘quality levels for other
factors. Complementary means to fill out or to complete. For example, if a high quality
level is specified for reliability, the specification is incomplete until a high quality level
has also been specified for correctness and verifiability. The reasoning is that even if
the metric scores were high for reliability, but the software was incorrect or difficult to
verify, the actual reliability could be low (i.e., a high number of errors per lines of code)

because of errors due to incorrect software or uncertainty in software verification.

Another example is that if a high quality level is specified for reusability, then high
quality levels should also be specified for reliability, correctness, maintainability, and
verifiability. The reasoning is that if metric scores were high for reusability, but the
software was not highly reliable, incorrect, and/or difficult to maintain and verify,
actual effort to reuse the software could be much higher than predicted by the
reusability metric scores alone because of errors due to unreliable and incorrect
software, difficulty in locating and fixing errors, and/or uncertainty in software

verification.

Using factors (e.g., reliability) to view aspects of software quality enables a singular
perspective on a particular quality concern; however this singular perspective is not
always an independent perspective oh quality, as is the case for complementary quality
factors. Any project, regardless of the type of system or application, should include
complementary factors in the quality requirements. Failure to do so could lead to a
situation in which metric scores are not true indicators of the total quality present.
Complementary factors should also be considered when attempting to validate metrics.
Failure to do so could result in misinterpreting correlation results between metric scores

and rating formula values.
4.1.2.5 Quality Goals Assignment

An initial set of quality goals should be assigned at this time. These goals should be
based on considerations mentioned in previous sections:

Table 4.1.2-6 Complementary Software Quality Factors

WDV O == = >

aOX-q@B— =)

—Zwa Qo wee ot =D

U WX — @ — =

wWXA 200~ J—>

N
QNN

N\

S ——dO—— =D 7

* .
SA-ZF4—2Z2qo—a—}> x *
VO WUR Zwnn * X
SV d—> \M\“\M

N

\\\,\

N

W

N

NOES> =M= d=>

N
N
N

22

= DEPENDENCY

(D= — > L 3 X | &
7
Z
—ZFwOa—> .
W w == ZU>-
>
[+ 4
d
Z>rac
wkFO &
s JdF W =
o gV = W =
z ol = B 5 @
s°© -0 S g12|&(2 2|k |z
S 5o Y |E |5 EIEIZ | 2|18 |5 |8 |3 |2
(VR sl |lalz|z|lalel|lg|Zz]d |9 |la T
24qu Sl (9|5 |a | |2 Lild | |F | |w
o a cel2|S(S|18|2|8|%|u|5 (S |2
vy 2 @ |wv > |0 |2 > lw |uw Z a 3

*

o
.

FA

X0 8

AAAAARY

R
] .
‘nrl‘ﬂ..)

-.-'u

:
.

AR v
O . .

P .

.

’. ." .C.. .I" i l.‘ .l.. .‘.

Four quality factors are complementary to most other factors and should be considered
when choosing important factors. These are reliability, correctness, maintainability, and
verifiability, as shown in Table 4.1.2-6. Low quality levels for these factors can
adversely effect measured (i.e., by factor rating formula) quality levels for other
factors. Complementary means to fill out or to complete. For example, if a high quality
level is specified for reliability, the specification is incomplete until a high quality level
has also been specified for correctness and verifiability. The reasoning is that even if
the metric scores were high for reliability, but the software was incorrect or difficult to
verify, the actual reliability could be low (i.e., a high number of erfors per lines of code)

because of errors due to incorrect software or uncertainty in software verification.

Another example is that if a high quality level is specified for reusability, then high
quality levels should also be specified for reliability, correctness, maintainability, and
verifiability. The reasoning is that if metric scores were high for reusability, but the
software was not highly reliable, incorrect, and/or difficult to maintain and verify,
actual effort to reuse the software could be much higher than predicted by the
reusability metric scores alone because of errors due to unreliable and incorrect
software, difficulty in locating and fixing errors, and/or uncertainty in software

verification.

Using factors (e.g., reliability) to view aspects of software quality enables a singular
perspective on a particular quality concern; however this singular perspective is not
always an independent perspective on quality, as is the case for complementary quality
factors. Any project, regardless of the type of system or application, should include
complementary factors in the quality requirements. Failure to do so could lead to a
situation in which metric scores are not true indicators of the total quality present.
Complementary factors should also be considered when attempting to validate metrics.
Failure to do so could result in misinterpreting correlation results between metric scores

and rating formula values.
4.1.2.5 Quality Goals Assignment

An initial set of quality goals should be assigned at this time. These goals should be

based on considerations mentioned in previous sections:

g
|
| 2 0t

RRRT AL S

AR e

AL

R

v % %
'.l"l
,
y

I's

¢

v "2 Ty

r
4
PP RN

]
v
o

-~
3
-
®

-
W -~
_n\‘h L)

2

2t BRI B T 2 Lt . .
N] S Sy

. p PR T AN . T

L R

75 U DR DO

P

’
1

I]
’
Ity

R ANs
r
£

v
sy
T,

-'< S,
r

y
.

v-' T el
Y.
.

s

T

Y
.
v

r
LS

K
r
¢ o
v

[

+
«fe’x

-
L
I
-
e
s
v

A AN

2’
(NS

AT
l'l" ,
(S
lil

.
L

)

.
-

-

A

o
Nty
["
L .l‘ u.

KPS
e ta .4

{

BeAticanys
A R

. ..~ T Ty Yy G
. AR
h e e e

.......
.

EUINC D= ==
\ a Q@ —d—>
—Z2Fwa Qo wee Q= =D Hm.\\w.“m

¥ m W W~ O —) = =D~ W\\u\\\
V - e/

] 4
- o wXa (ZOq0——t—> “\M\\wﬁ
. vi/a2
. V7
\ M Sug—u—ga——t—> x| % [x| % \\\“ L EEHE NEK AR
3 = 22

2

§ nnvw Sq-Z-q-2dm—2—F> * % R EEIEEERE IR
., © 7
: M VO xxuwU- Zunan X | | & {X N\\\\ T BESE BEEBEBE.BEK]
o w 77/ S
g 52
a & SN~ = \\\\\\
X =) e g
L, W 7Y
b VD> =D LD == \\\\
5 m. 7 A ~
¥ 7%
3] Wt — (D= S — > * \\\\\\ x|k X |x [k [x |k |Kk]K ¢
4) 4 DR ~
. 4
3 m ZrwOa—> &\
h [~ 73777
! =) wuw—U=—w2U> VA
. = 7
e
- S
5 © z
. m <
5 N >

- W.HO W >
. @ 220G E S g

p— w - =

e e & w |3 £ & W e
¢) a o4 - w | o W = a W Q Lty A A
’ e S > a0 > = z|S|s|2 |z |= |5 £ s AL
f S Eoz SlE|S|2IE|E1Z 3|12 |5(¢(2(2] &)
g (W] - = b4 = 2| g = U q b [a)) m o w PP -
3 <OU W leloa|z2|2 |wle|Tlzla |Q |« (a o RN

D2qQW o] [G] S |a | 2 w |l g = o - w PAhEN
ou g s (BlZlz(218 |2l X jw |3 " B

. & Z _n..m W > Jo (|2 SIe | |2 |6 | X _.......\.-.n.
2 2
. N
! . v 1

A S MDA R AC A A S A A G b CL AL et it et e e
=~ »
S
? ey
) ¥
) . R
bl a. Command and control quality concerns. ek
oy . e
ot b. System quality factors. N
c. Quality requirements survey. w

N
[

d. Complementary quality factors.

Cost considerations and positive and negative factor interrelationships, which affect

feasibility of the goals, will be considered in subsequent steps.

Table 4.1.2-7 represents the initial quality goals for the example airborne radar system.
These goals are based on considerations a through d and include the complementary
quality factors. The goal indicators used are E = excellent, G = good, A = average, and

blank or N/A = not important or not applicable.

Numeric ranges for goal indicators will be discussed later. At this point in the
specification process, an E goal would indicate a great deal of emphasis required for the
quality factor, an expected high quality score, and correction of lower scoring areas of
the software. A G goal would indicate emphasis on most aspects of the quality factor
attributes with correction of only selected low scoring software areas. An A goal would
indicate a desired awareness of the aspects of the quality factor and incorporation of
quality considerations where convenient in the development methodology but with little
or no cost impact. A blank or an N/A would indicate that this quality factor is either not

important or not applicable.

The entries marked with an "*" in Table 4.1.2-7 are either new goal entries or entries

...
'l 3.

.
[N

A

changed to a higher goal as a result of considering complementary quality factors. (See

v oz
e
i e
y & e

Tbi. 4.1.2-5 for survey results.) An example is that the goals for verifiability were e
raised to E and new entries were made for several functions at the E level because of the L.,
E goals for reliability and usability. =3

.\ .

’

’
ol i,

v

'- S, "y e
PARPLIEU R
PP P Py P ———

4.1.3 Consider Interrelationships (Step 3)

I:f:-,:lz‘, In step 3, interrelationships among the factors assigned to a single system-level function
are explored with respect to the technical feasibility of achieving the quality levels
assigned as the initial set of quality goals. The initial set of quality goals was
i;_ established in step 2. Step 3 and step 4 explore the feasibility of achieving those goals. ,,.H:
o NG
.j_\"' -

« e
e Ny
2
- .
P

it A “h - it A~ aete i A ~ s =i g

Table 4.1.2-7 Software Quality Factor Identification Form - Iniiial Goals

PERFORMANCE DESIGN ADAPTATION .
NOTE FORGOAL ENTRIES T
Ej1 [R[s [ulc | ™M]V]ET]TF] ™ Ts SN
F N E U 5 o A E X L N |C E € m EXCELLENT) ’_‘.
f T L R AlR | R P € 7 |R 1) G = GOOO ‘;'
i E |1 vis }JRrR|N{! Al X e IT 1S A = AVERAGE Yot
SOFTWARE cle|ali[rfe|[v e Nl [r]a [A | sancona- -
Q I |R|B|viL{c|Aa]|t {D]|B |08 [B o
FACTOR £ . . A ; T . ala | p 1y \ NOT IMPORTANT OR NOT .
niTlodelrIntn]sle|tfe |t |u]| arrucane
C Y | 1 Y 3 A | i R | | * o CHANGED £
SYSTEM OR SOFTWARE Y T s B jLlueiTt]alT v i
UNIQUE Y \ 3 | | i Yyig ly Y)
FUNCTION T LT] :
2 Yy |y L .
T | .
Y 1 -
N/A] v | A |NA .
SURVEILLANCE AND IDENTIFICATION e lele elele leelelals _—
THREAT EVALUATION clale e le le lee G)
WEAPONS ASSIGNMENT /CONTROL G|E|E! EjE|e le*]Gc|G}e O
BATTLESTAFF MANAGEMENT Alalce e e ter jer G S
COMMUNICATIONS e [e | e |e le e G ——
MAN-MACHINE INTERFACE E|E E|e lee e G |G
EXECUTIVE E e | e lo |ee G
INTEGRATED TEST FUNCTION £ E |E* et [
MISSION TRAINING £ E|le (e (e e o
p=
;_:’
i
b~
-
'1
[~
P
-
b.'
Q
»;‘ s
- NG
x .
N =
N .
."-
- .

b AD-A153 989 SPECIFICATION OF SOFTWARE QUALITY ATTRIBUTES VOLUNE 2 2/2
- SOFTHARE QUALITY SP..<U> BOOING AEROSPACE CO SEATTLE WA

T P BOWEN ET AL. FEB 85 D182-11678-2
UNCLASSIFIED RADC-TR-85-37-V0L-2 F38682-82-C-8137 F/G 9/2

R R R AT T W Spor

ZTr
b
4

=
kY

Lot e
o Wy

’
-)
‘.-'.: ,
::l - -

. 1

g 1.0 Bk L

\1 — - W | E¥) 122
=t

N ¥ o 20

: s 2%

f— —— 1.8

2 W-

% iz s s

-4] —

-

{

;

MICROCOPY RESOLUTION TEST CHARY
NATIONAL BUREAU OF STANDARDS-1963-A

i

-

SRR
4

e

- T
LS o

-

e -

-
Sy

PR

S AR AN DA T B ST o i, wr e R R
w e ’ AR AT \"'i N . Wt N \ . y 1,‘."’ RN v~
‘.r.h N\\ ~- ‘«--

o
i&-ﬁ@:& Lx!hm :

)
4%
“2 ‘rh

A

.‘ " ‘.’-"‘.‘

PSR % Wiy B W

s~

s a

"’{.“.

AT Mg

[$

FAISILILA

A - .".",\':'}'_, .i -'.

2 |

Assigning more than one quality factor to a function (and therefore to software
supporting that function) can, in some cases, have either a beneficial or an adverse
effect, depending on the combination of factors that have been assigned. Some factors
share common criteria; some have criteria that conflict with another factor; and some
have criteria that benefit another factor. Four areas are explored in accomplishing step
3: shared criteria, beneficial and adverse relationships, quantification of relationships,

and review of quality goals.
4.1.3.1 Shared Criteria

Shared criteria are those that are an attribute of more than one quality factor and can
be identified using Table 3.2-1. For example, modularity is a criterion for eight of the
13 factors; generality is a criterion shared by three factors. In the example system,
surveillance and identification has been assigned five quality factors sharing the
criterion modularity (maintainability, verifiability, expandability, flexibility, and
interoperability). The beneficial effect here is that modularity is built into the software
only once, not five times; and metric data collection for modularity is performed only
once. Therefore, costs associated with assigning factors that share common criteria are
generally less than costs associated with assigning factors that do not share criteria.
(Costs are considered in more detail in the next step.)

4.1.3.2 Beneficial and Adverse Relationships

Attribute criteria affecting another factor are identified in Table 4.1.3-1. Criteria that
are basic attributes of a factor are identified with an x; criteria that are in a positive or
cooperative relationship with a factor are identified with a triangle, and criteria that are
in a negative or conflicting relationship with a factor are identified with an inverted

triangle.

For example, operability is a criterion of usability and is shown as having a cooperative
relationship with both maintainability and verifiability. The assertion is that the
operability of usable software aids in software verification and maintenance, even
though it is not an essential characteristic of verifiability and maintainability. The
implication is that the desired rating for maintainability and verifiability (in terms of
effort to fix or verify) will be easier to achieve if usability is also a specified quality

factor.

f
O
‘e
L .
.
o™ »

v

“~
DAL AL
Ve

~

d'l“n"
»

f ,'. L4
W

ol Sl)
v

rYev vy

r
Y'.l 'r
r‘a'f'

«
Ay

L R T T YN R W T W S v TR TN L IS T = T T v L e e b g = B SR

53‘
ﬁ.‘.\' -

Table 4.1.3-1 Effects of Criteria on Software Quality Factors

'!
5
i
Pt
ACQUISITION CONCERN PERFORMANCE DESIGN ADAPTATION
“,._ Y
a FACTOR/ACRONYM elale s)seleetetatal® L3
C Flrjpoirialel i |eflfetielr]|nlo g
Q ' 3 ' visetlainw] A1 x| E 14 s S Bo
u C G| a | [E T [4 N t R Al a 59
] tlrfsfvicv]lc|alifofleolo|e]s)
s € 1 | A [T | A A t 4 ' : wr &
! b3 I I O B N R AN
A\ [} [}]] R]
! v T sio oo frjafr]r »
o Y | s | 1 [} Y 8 Y Y o
N : L T T 1 1
A L \
& T | i
o v r .
N % " %
¢ Ly
R CRITERION/ACRONYM elofnfstulclmlv]iefeli]|r]a M
~ fFlelvjv]|s]ne elx]xjer|ofu LAY
ACCURACY ac I<7 x '
° ANOMALY MANAGEMENT v <7 X xo 1A Qs
€ AUTONOMY A x) ‘%
R Y T
£ DISTRIBUTEDNESS DI < X ﬁ‘» :
° EFFECTIVENESS - COMMUNICATION EC x <z |z < T
™M EFFECTIVENESS - PROCESSING 2] x Avdivd < oo
A . 4
n EFFECTIVENESS - STORAGE 133 x \vd v <7 N
C OPERABILITY oP < X A A
E RECONFIGURABILITY e <> x A Avd A vd <IT
SYSTEM ACCESSIBILITY S | x '!:{*iz;
TRAINING ™ x \:. :t'
L
° COMPLETENESS co PN 2 :}hty
s CONSISTENCY cs x | x Ialala A L) sai
A TRACEABILITY TC LI VAN PN P D ~ “ s
N VISIBILITY vs x | x &\,&
APPLICATION INDEPENDENCE ap Pa -
A AUGMENTABILITY ar x Py L
o COMMONALITY a <7 X t:(»;
H DOCUMENT ACCESSIBILITY 0o < A x :
T FUNCTIONAL OVERLAP) x i;l b
2 FUNCTIONAL SCOPE 5 x ;‘ ‘:é:
) GENERALITY “ 3 A d hvd Avd L wd = | x i x bR 0
e INDEPENDENCE o < x | x |«
SYSTEM CLARITY T x
SYSTEM COMPATIBILITY sy < x
VIRTUALITY VR S X
g MODULARITY Mo 1< x x| x fx x | x
N SELF.DESCRIPTIVENESS 0 |7 x | x fx |x x
H SIMPLICITY s |z x x [(x [x|x x
a
L
NOTES. X = BASIC RELATIONSHIP
s POSITIVE EFFECT
7 . neGaTIvEERFECT
BLANK » NONE OR APPLICAT'ON DEPENDENT
4-26

P

e WA > A LTS R 5 TR ISR 1383
N R ‘.i".w'-"x}-'»

N O A AR SRR AR TR BN STy

Anomaly management is an example of a criterion with a conflicting relationship.
Anomaly management is a criterion of reliability and is shown as having a negative

'} .8 .
e B Bk

e 2t

relationship with efficiency. The assertion is that the additional code required to
perform anomaly management increases runtime and requires additional storage, thus

x5

Pl

decreasing potential efficiency. The implication is that the desired rating for efficiency
(in terms of utilization of resources) will be more difficult (or more costly) to achieve if

A

5]
4

reliability is also a specified quality factor. Possible solutions to this type of conflict

include:

Spending the budget and schedule to try to achieve goals as high as possible for
both factors.

Lowering goals for one or the other factor.

Allocating higher goals to the computing hardware (e.g., more efficient processor,
more reliable processor) and possibly decreasing emphasis on high software quality
goals (e.g., a more efficient processor to decrease emphasis on high software
efficiency in achieving overall system efficiency and enabling a lower software
quality goal for efficiency).

Another possibility is to decrease emphasis (goals) for the specific criterion that
conflicts with another quality factor and increase emphasis on those that do not. This
possibility will be explored in Section 4.2 in the discussion on criteria weighting.

4.1.3.3 Quantification Of Relationships

Table 4.1.3-2 details the rationale for each cooperative relationship identified in Table
4.1.3-1; shared criteria are identified as common for more than one factor. The degree
of effect is noted as 1 = low, 2 = medium, and 3 = high. This will enable a quantification
of the degree of effect caused by factor interrelationships. Table 4.1.3-3 details the

rationale for negative factor interrelationships.

Table 2.2-2 summarizes, at the factor level, the positive and negative relationships in
Table 4.1.3-1. Table 4.1.3-4 is in the same format as Table 2.2-2 and is an example
quantification of interrelationships for factors assigned to the surveillance and
identification function of the example system. For each factor assigned to this function,
Tables 4.1.3-2 and 4.1.3-3 were consulted to identify the factors affected and the reason

N

Table 4.1.3-2 Positive Factor Interrelationships

NOTE: 1=LOW

2= MEDIUM
3 = HIGH
N/A = NOT APPLICAELE
AD = APPLICATION DEPENDENT
FACTOR SPECIFIED FACTOR(S) AFFECTED A OTEE REASON
EFFICIENCY NONE N/A N/a
INTEGRITY AD AD AD (NOTE MIGH INTEGRITY CAN REDUCE THE
NUMBER OF ERRORS INCREASING THE
RELIABILITY RATING
RELIABILITY SURVIVABILITY 1 OTHE CRITERION ANOMALY MANAGEMENT IS

COMMON

MAINTAINABILITY

@THE CRITERION SIMPLICITY IS COMMON

VERIFIABILITY
EXPANDABILITY
FLEXIBILITY
REUSABILITY
USABILITY ! @GOOD ANOMALY MANAGEMENT CAN
REDUCE OPERATOR WORKLOAD
SURVIVABILITY RELIABILITY 1 (SEE ®. ABOVE)

MAINTAINABILITY
VERIFIABILITY
EXPANDABHITY
FLEXIBILITY
INTEROPERABILITY
PORTABILITY
REUSABILITY

®THE CRITERION MODULARITY IS COMMON.

USABILITY

(SEE @. ABOVE)

MAINTAINABILITY

THE RECONFIGURABILITY OF SURVIVABLE
SOFTWARE CAN AID IN LOCATING PROBLEMS

USABILITY MAINTAINABILITY 1 THE COMMUNICATIVENESS OF USABLE
VERIFIABILITBYL SOFTWARE AIDS IN VERIFICATION AND
MAINTENANCE OF THE SOFTWARE
CORRECTNESS MAINTAINABILITY 1 @THE CRITERION CONSISTENCY 1S COMMON
MAINTAINABILITY 1 THE COMPLETENESS OF CORRECT SOFTWARE
REUSABILITY AIDS IN MAINTAINING AND REUSING THE
SOFTWARE
A ey ‘ ®THE CONSISTENCY OF CORRECT SOFTWARE
EXPANDAS! AIDS iN VERIFYING THE SOFTWARE AND IN
REUSABILITY MODIFYING THE SOFTWARE FOR NEW USE.

MAINTAINABILITY

THE TRACEABILITY OF CORRECT SOFTWARE

g VERIFIABILITY AIDS IN VERIFICATION AND MAINTENANCE OF
& EXPANDABILITY THE SOFTWARE AND IN MODIFYING THE
Y FLEXIBILITY SOFTWARE FOR NEW USE.

. REUSABILITY

N

L’%,

.A. l-,
L g ol Sl

"(,“f‘f\

el 4

P
.

.
.
T

LS
o

Tt
DI

= !

\' . -‘) .
\ .

-~ .
VTS VR U VL

Wl .

.“, » .‘[\ “

l": R ‘_"‘_" A‘r »

Lot Sped Iy

=

cPate Va8 a

Table 4.1.3-2 Positive Factor Interrelationships (continued)

e WY

TUTWTEIfN YT BT G W % T &

NOTE: 1=LOW

2 = MEDIUM

3 = HIGH

N/A = NOT APPLICABLE
AD = APPLICATION DEPENDENT

T T) Na 1 MG MR TR T ET T LT RTT AT

FACTORSPECIFIED

FACTOR(S) AFFECTED

DEGREE
AFFECTED

REASON

MAINTAINABILITY

CORRECTNESS

(SEE ®, ABOVE)

VERIFIABULTY

OTHE CRITERION VISIBILITY IS COMMON

SURVIVABILITY
VERIFIABILITY
EXPANDABILITY
FLEXIBILITY
INTEROPERABILITY
PORTABILITY
REUSABILITY

(SEE ©@. ABOVE)

VERIFIABILITY
EXPANDABILITY
FLEXIBILITY
PORTABILITY
REUSABILITY

®THE CRITERION SELF-DESCRIPTIVENESS IS

COMMON.

RELIABILITY
VERIFIABILITY
EXPANDABILITY
FLEXIBILITY
REUSABILITY

(SEE @. ABOVE)

VERIFIABILITY
EXPANDABILITY
FLEXIBILITY
REUSABILITY

(SEE ® . ABOVE)

VERIFIABILITY

MAINTAINABILITY

(SEE @. ABOVE)

SURVIVABILITY
MAINTAINABILITY
EXPANDABILITY
FLEXIBILITY
INTEROPERABILITY
PORTABILITY
REUSABILITY

(SEE ©. ABOVE)

MAINTAINABILITY
EXPANDABILITY
FLEXIBILITY
PORTABILITY
REUSABILITY

(SEE @, ABOVE)

RELIABILITY
MAINTAINABILITY
EXPANDABILITY
FLEXIBILITY
REUSABILITY

(SEE @. ABOVE)

o g ma g a~s

Table 4.1.3-2 Positive Factor Interrelationships (continued)

NOTE: 1=L0W
2= MEDIUM
3= KIGH
N/A = NOT APPLICABLE
AD = APPLICATION DEPENDENT

FACTOR SPECIFIED

FACTOR(S) AFFECTED

DEGREE
AFFECTED

REASON

EXPANDABILITY

FLEXIBILITY
REUSABLITY

®THE CRITERION GENERALITY IS COMMON

SURVIVABILITY
MAINTAINABILITY
VERIFIABILITY
FLEXIBILITY
INTEROPERABILITY
PORTABILITY
REUSABILITY

(SEE @. ABOVE)

MAINTAINABILITY
VERIFABILITY
FLEXIBILITY
PORTABILITY
REUSABILITY

(SEE @, ABOVE)

RELIABILITY
MAINTAINABILITY
VERIFIABILITY
FLEXIBILITY
REUSABILITY

(SEE @. ABOVE)

INTEROPERABILITY

THE GENERALITY OF EXPANDABLE SOFTWARE
AIDS IN INTERFACING WITH SOFTWARE OF
OTHERSYSTEMS

FLEXIBILITY

EXPANDABILITY
REUSABILITY

(SEE ®. ABOVE)

SURVIVABILITY
MAINTAINABILITY
VERIFIABILITY
EXPANDABILITY
INTEROPERABILITY
PORTABILITY
REUSABILITY

(SEE ®. ABOVE)

MAINTAINABILITY
VERIFABILITY
EXPANDABILITY
PORTABILITY
REUSABILITY

(SEE ®. ABOVE)

RELIABILITY
MAINTAINABILITY
VERIFIABILITY
EXPANDABILITY
REUSABILITY

(SEE @. ABOVE)

INTEROPERABILITY

THE GENERALITY OF FLEXIBLE SOFTWARE AIDS
ININTERFACING WITH SOFTWARE OF OTHER
SYSTEMS

. v, ." i
-'s-"'t".v' .f

)
2,

. a
oA

.,‘
‘.Jl
IR

Kz

S LS

s

N

1
,}‘. ~

Ko
[P

g

[

i N
&5
i "~

yow

oS,
IS W RN 8 Gy §

Table 4.1.3-2 Positive Factor Interrelationships (continued)

NOTE: 1=LOW
2 = MEDIUM
3 = HIGH
N/A = NOT APPLICABLE
AD = APPLICATION DEPENDENT

=
¥}

FACTOR SPECIFIED FACTOR(S) AFFECTED ATEGREE REASON
PORTABILITY 1 @ THE CRITERION INDEPENDENCE 1S COMMON
INTEROPERABILITY REUSABLITY OMMO

SURVIVABILITY
MAINTAINABILITY
VERIFIABILITY
FLEXIBILITY
PORTABILITY
REUSABILITY

(SEE @. ABOVE)

PORTABILITY

INTEROPERABILITY
REUSABLITY

(SEE ®. ABOVE)

SURVIVABILITY
MAINTAINABILITY
VERIFIABILITY
EXPANDABILITY
INTEROPERABILITY
REUSABILITY

(SEE ©. ABOVE)

MAINTAINABILITY
VERIFABILITY
EXPANDABILITY
FLEXIBILITY
REUSABILITY

(SEE @, ABOVE)

REUSABILITY

EXPANDABILITY
L EXIRILITY

(SEE @. ABOVE)

INTEROPERABILITY
PORTABHITY

(SEE ®. ABOVE)

SURVIVABILITY
MAINTAINABILITY
VERIFIABILITY
EXPANDABILITY
FLEXIBILITY
INTEROPERABILITY
PORTABILITY

(SEE @. ABOVE)

MAINTAINABILITY
VERIFABILITY
EXPANDABILITY
FLEXIBILITY
PORTABILITY

(SEE ®. ABOVE)

RELIABILITY
MAINTAINABILITY
VERIFIABILITY
EXPANDABILITY
FLEXIBILITY

(SEE @. ABOVE)

PORTABILITY

THE DATA AND ARCHITECTURAL INDEPENDENCE
OF REUSABLE SOFTWARE ENHANCES SOFTWARE
PORTABILITY

MAINTAINABILITY

WELL: STRUCTURED DOCUMENTATION WHICH 1§
EASY TO ACCESS IS AN AID IN MAINTAINING THE
SOFTWARE

INTEROPERABILITY

THE GENERALITY OF REUSABLE SOFTWARE AIDS
ININTERFACING WITH SOFTWARE OF OTHER
SYSTEMS.

A

F

I

.
4

-~
° ¢
W's

o
'y n]

F oy
_ P

e
¥y

A

N

ol o

o

x

P I

«Teta s a » <

- s ¢ .4

Table 4.1.3-3 Negative Factor Interrelationships

NOTE: 1=LOW
2 = MEDIUM
3 = HIGH
N/A = NOT APPLICABLE

FACTORSPECIFIED

DEGREE

FACTOR(S) AFFECTED AFFECTED REASON
" MAINTAINABILITY 2
EFFICIENCY CODE WHRICH IS OPTIMIZED FOR EFFICIENCY IS
MORE DIFFICULT TO TEST AND TO MAINTAIN
VERIFIABILITY 2
PORTABILITY 2 CODE WHICH IS QPTIMIZED FOREFFIENCY
USUALLY DECREASES PORTABILITY
EFICIENCY THE ADDITIONAL RUN TIME AND STORAGE
INTEGRITY EFFICIENC 2 REQUIRED TO CONTROL ACCESS TO CODE
AND/OR DATA DECREASES EFFICIENCY
RELIABILITY EFFICIENCY 3 THE ADDITIONAL CODE REQUIRED TO PROVIDE
ACCURACY AND TO PERFORM ANOMALY
MANAGEMENT INCREASES RUN TIME AND
REQUIRES ADDITIONAL STORAGE THE USE OF
AN HOL TO ACHIEVE SIMPLICITY CAN DECREASE
EFFICIENCY.
SURVIVABILITY EFFICIENCY 3 MODULAR, ANOMALY TOLERANT,
RECONFIGURABLE SOFTWARE INCREASES RUN
TIME AND REQUIRES ADDITIONAL STORAGE.
THE DISTRIBUTEDNESS REQUIRED FOR
INTEGRITY 2 SURVIVABLE SOFTWARE INCREASES THE RISK OF
UNAUTHORIZED ACCESS
SLEXIBILITY ' THE RECONFIGURABILITY REQUIRED FOR SURVIVABLE
SORTABILITY SOFTWARE REDUCES ITS POTENTIAL EXPANDASILITY.
2EUSABILITY FLEXIBILITY. PORTABILITY & REUSABILITY
- EASING AN OPERATOR'S TASK AND PROVIDING
USABILITY EFFICIENCY ! MORE USABLE OUTPUT REQUIRE MORE RUN
TIME AND ADDITIONAL STORAGE.
CORRECTNESS NONE N/A N/A
MAINTAINABILITY EFFICIENCY 2 ®MODULAR. SELF-DESCRIPTIVE. SIMPLE CODE
RESULTS IN INCREASED OVERHEAD AND
VERIFIABILITY DECREASED OPERATING EFFIC.ENCY
EXPANDABILITY EFFICIENCY 1 DINCREASED GENERALITY OF THE CODE
INTEGRITY USUALLY RESULTS IN LESS EFFICIENCY.
RELIABILITY INCREASED VULNERABILITY TO UNAUTHORIZED
SURVIVABILITY ACCESS. A WIGHER NUMBER OF ERRORS,
'INCREASED DIFFICULTY IN PROVIDING
ACC JRACY. AND MORE COMPLEX ANOMALY
MANAGEMENT
ZFRICENCY ' VIRTUAL STORAGE CAN INCREASE RUN TIME
cFEICIENCY 2 ISEE D ABOVE)
4-32

v -
MR

e

>

;.

A g
-

>
LA
P N

[

¢ ",.(J\{. ~

Table 4.1.3-3 Negative Factor Interrelationships (continued)

NOTE: t1=LOW

2 s MEDIUM
3 =HIGH
N/A = NOT APPLICABLE
FACTOR SPECIFIED DEGREE
T FACTOR(S) AFFECTED AFFECTED REASON
EFFICIENCY 1
FLEXIBILITY INTEGRITY (SEE @, ABOVE)
RELIABILITY
SURVIVABILITY
EFFICIENCY ? (SEE ®. ABOVE)
EFFICIENCY 2 THE USE OF STANDARD INTERFACE ROUTINES
INTEROPERABILITY AND DATA REPRESENTATIONS INCREASES
OVERHEAD AND REDUCES OPERATING
EFFICIENCY.
@EMPHASIS ON SOFTWARE SYSTEM AND
EFFICIENCY ! MACHINE INDEPENDENCE DECREASES
POTENTIAL EFFICIENCY.
INTEGRITY 1 COUPLED SYSTEMS HAVE MORE AVENUES OF
ACCESS. MORE USERS, COMMON DATA
REPRESENTATIONS, AND SHARED DATA AND
CODE; THESE INCREASE THE RISK OF
UNAUTHORIZED ACCESS
H.GHLY MODULAR CODE CAN REQUIRE MORE
EFFICIENCY ! OVERHEAD, DECREASING OPERATING
EFFICIENCY
EFFICIENCY 1 E®.ABOV
PORTABILITY CIE (SEE @. ABOVE)
EFFICIENCY 2 MODULAR, SELF-DESCRIPTIVE CODE RESULTS IN
INCREASED OVERHEAD AND DECREASED
QPERATING EFICIENCY
REUSABILITY INTEGRITY 3 WELL-STRUCTURED DOCUMENTATION WHICH !S
EASILY ACCESSIBLE INCREASES THE RISK OF
UNATHORIZED ACESS
EFFICIENCY 1 (SEE @, ABOVE)
INTEGRITY
RELIABILITY
SURVIVABILITY
EFFICIENCY 1 (SEE @, ABOVE)
EFFICIENCY 2 (SEE @, ABOVE)
N

< ot
Ay

AR
AT
) Soat L

.
2

."]
2 a2l
b o &

il

o

=
*

)

oy Y by

e
b e A A

v
Sty

.

B
3

oy va
» T
[
1{ R
Lo

"

? @Licoat pe suEOND D g v o TV, T, Y v - = .l..lt“I-un.\.l TR e A aney
e . Yo et e S N .
e N e O A A s S b facataalal sy Lt i EAPRPPRPATARL IS W e Ty % - -

PR

Sl AN . I
s® L aa™a”

.,
.’ -
X P \\\“ _
“ EWDONCD =t > > \\\\\\ _
' 7
. Z [0 0x-qa—a—-> < A
4y - >
. : did7Z 1135
., —ZweQowr (Mm——t— ¥ S
1 m ZrweQawed > \\\“ IRE
A 7 N
) g] s >l 14 . e
a . VA
'\ = wXa.qZOCO——i—> v & & §\ Tle
", = _ 77
g 3 ‘ v
w.. .M.AM . SWE—u— g —d—> V & & & “\\\ +1 N
./ U] 7 ™
m‘,_ © 2 |sczra—zaar | JEIEL Rk
o o= o V25 qg] g
w. -m CORRECTNESS \\\\ |3
s (o) \\\\\\. - P
3 S Sndo—a—> A A.\\\\\w +| 2 <
5] - 3
, [2 |vOE>—->dm—-Jd—> > \\\ > _ /_4
? [et 7 =
I - - 7 Sl
- In « | xwo—-—qa—a=> & 3 \
—. [~ m \\ \\ < N A/H
3 $ g | -2-wom—r>) D >ID>ID DIE]-
L & a - =
r = wi —U—wZU> 2 0IDIDIDL IDIDIBIDIBIDID] g8
. - ! L L '
m o g < g S
3 - 2 2 |2 v
K - @ o
h = o] rew v
\ < 2l S2& = g 2|2
g [(@) < VU w = S gL | =
3 et D2d > w | = m = =10
2 oY g = w | @ Wn o] < w [o3
L 5 >« > > |2 Silg5]la = £ lE]w
: o & w 5 | 5 z |2 |2|%|E |8 |55 |wl2
A [y S9% S|« ElE S| Slalz sz |21F
3 A 5o S lz|a S8 21<|8iz |62 |2]|E]«
A 5 (TR w e o |3 |2 jw|e |22 4 |qg |
3da SlulelS|alelzlelg(z (Sl v l5lY
b o ouw = e w Sl |« | | & la |5 ¥ e |D Ol w
1) s lad@((s (v]O wlx |5 (510 [w |alZ
94 < w Z @ |w»n s (] b > | w | = a 4
)
P qUOD-wn=r-02 VO2VwWeZ|lawxuDaeSq2uw Dwwnw-~V2 O0qa-4q~-02
p
4
p
1
‘ T Tt ‘,_ 'y = RGN T - 'y RFAAEY (U S TN Y P AR € A...c.,.‘.-J-.-\.- N
'--.....f.\.q .‘.\.ﬂ‘.«,...\”.‘-\u-nu .u.. . SRR s .ﬁhnﬂ.qm.- u-ﬂ#.\n.«\, - ..-4.. -.J- ' Fax \-u A w J. o, -.. .-h‘\.- . -;n\~ RACRLICNC

-

. ¢

»
Y PN
ST T
2 T I]
o h

VNI g SN

» 'v"}n’:‘l’_'.’,‘- ’1 T o

0
.

A

1
o

3 ol
Ma

¢

A
..
- "
-ty
-
N

for and degree of effect. If the reason was valid for this system, the degree of effect
was entered in the appropriate triangle. To remain conservative in estimating positive
effects, only criteria relationships were considered. Effects of shared criteria were not
quantified. Each column was totaled to indicate the degree of positive and negative
interrelationship for each factor affected; the higher the score, the greater the effect on
the factor. The cooperative effect is the highest for verifiability (+4), followed by
maintainability, expandability, and flexibility (each with +3), then by interoperability (+2)
and usability (+1). Major contributors to the cooperative effect are correctness (+8),
maintainability (+3), and usability (+2).

The conflicting effect is, by far, the highest for efficiency (-20), followed by integrity
(-3) and reliability, maintainability, and verifiability (each with -2). The score for
flexibility is zero. All factors, except correctness, contribute to the conflicting effect.
The major contributors are expandability (-6), interoperability (-5), and flexibility and
efficiency (each with -4). The major conflict, as shown by the table, is needing software
that would have low adaptation costs and also efficiently utilize resources in its intended
application.

4.1.3.4 Review of Quality Goals

The final action in this step is to review initial quality goals established in step 2 (see
Tbl. 4.1.2-7) in light of cooperative and conflicting relationships quantified in step 3 and
to modify them if necessary. Two levels of goals were set for factors assigned to
surveillance and identification: excellent and good. An excellent goal was set for seven
factors: efficiency, integrity, reliability, usability, correctness, maintainability, and
verifiability. A good goal was set for three factors: expandability, flexibility, and
interoperability.

The main conflict in quality goals, as indicated by Table 4.1.3-4, is between the
adaptation factors and efficiency. This conflict is important to note; however, it is not
critical because goals for adaptation factors are good and not excellent, and the
conflicting effect on efficiency is less. However, efficiency also conflicts with factors
assigned an excellent goal: integrity, reliability, usability, mairtainability, and
verifiability; and the effect on efficiency is greater. This situation is critical and

requires action because achieving the initial set of goals is not possible.

.................

e le
-

O
e

N
r‘.'.’- Ly

!l’l-t"‘l
RELFRTRY [
3

P4

“ - JL[e

LY
v

U R U I A S

|

g

’
v
ST
b
LA L I J

’

T

. . A
Fow .

FRR T SO ¢
A

v '

e
s e

o
£

rell
ApS
.

v
)
Y
M

" g
i,
»

»

Te

Pl i Al
PR
I e]
PR

N ‘—.“,.7
. .

AR g v b ¢

rTowR

T

v

LA

Table 4.1.3-5 Software Quality Factor Identification Form - Revised Goals

PERFORMANCE DESIGN ADAPTATION
NOTE FORGOAL ENTRIES
3 I R U C MV I]E 3 P | P R
F N E E 5 0 A E X L N 0 £ € = EXCELLENT
FIT L RIA|R ! RIPJTELT |R JU G = GOOD
| £ | viB|RrR]N]I Al X g [T |S A o AVERAGE
QALY clelalv el nlr ulnin(a o] smom.
| R v L (o]
FACTOR £ i | Al T \ ala h e |1 h NOT IMPORTANT OR NOT
N T L B T N N B] L E L L APPLICABLE
cly |1 i Y e | ALl | R | * o« CHANGED
SYSTEM OR SOFTWARE - Y T{ s 1B {L L TtIa T [T
UNIQUE v | s v vy | yle [Y |Y
FUNCTION T [A
Y | Y Y L
T]
Y T
Y
SURVEILLANCE AND IDENTIFICATION G* {E E N/A | E 3 3 |3 G G G N/A | NJA
4-36

I

‘-" 0 - t‘.‘
Lanata Cadon dg s

The most obvious action, and the action taken for the example system, is to require very
efficient processing hardware in order to alleviate the need for highly efficient software.

This enables lowering the efficieny goal from excellent to good. Although this does not

necessarily solve the problem, it changes the likelihood of achieving the goals from
impossible to feasible.

These goals are established early in the system life cycle—at the same time that
technical performance and design requirements are being established for the whole
system. Thus, it is possible to increase efficiency requirements for processing hardware
based on needs established by software quality goals. However, only a limited amount of
efficiency is available from a given processor. Although the quality goal for efficiency
has been lowered, efficiency still conflicts with most of the other factors. Several
things might be done to ensure that overall goals can be met within budget constraints.
For example, processing efficiency most often depends on a small percentage of
software; high software efficiency goals could be assigned selectively to the software.
Key units would be assigned high goals and other units assigned lower goals with the
effect of satisfying overall efficiency requirements. Another possibility is to set quality
goals at the criteria level in favor of nonconflicting criteria. For example, generality (a
criterion of expandability) conflicts with three factors: efficiency, integrity, and
reliability; whereas augmentability (also a criterion of expandability) does not conflict
with any factor. A high quality goal can be assigned to augmentability and a lower goal
set for generality so that average criteria scores will satisfy the factor goal. Please
note that, although this technique will enable slightly higher scores for efficiency
through minimizing conflict, it will reduce software expandability. Techniques for
specifying criteria are explored in Section 4.2,

Table 4.1.3-5 shows the new set of quality goals for surveillance and identification. This
set resulted from the analysis of this step of the procedure. Only the goal for efficiency
was changed —from excellent to good—because of conflicts previously noted.

P N TR M ENE TN e TR Ny S L O R T T, T a s w7 wl &0

Table 4.1.4-1 Life-Cycle Quality Costs/Benefits

Ufe-cycle Activity/ Software Code and Unit .
Acquisition Phase System/Sottware Requirements Testing through Production
Requirements Analysis through Operational Testing and Product
Analysis Detailed Design and Evaluation Deployment Adaptation
fuil Scale Development Production

Quality Demonstration and CDR and

Costy/Benefits vahdation Deployment (Phases, as required)

Potential Costs:

Specify Quality Requirements X

pecify Quality Req Repeated.
Allocate Quahity Requirements X As
Necessary

Design and implement for (X) X X

Quality

Evaluate Achieved Quality X X X
LTt
' 0 .’_.ﬂ
RRE:

RST

Ty '.i

Potential Cost Benefits:

Increased Quality Awareness X X X X X

Better Quality Products X X X

Early Probtem Detection) X X

Fewer Problems/Errors X X

Less Effort (x) X X

Note: () = Project dependent

o

b et
l‘l
'l

By

™
B
4

o

PR o
P s
190

R T

Nt
a's

»
a e,

o

<
r

TR ER

»

‘I".“Y
Bty

TR

-
.

P m "R " e PR - -y
L 3oall 3

L NN . .

n

"
)
.
n'.
3
3.
)

X

PP
. f‘.l‘,_lr

..
a
.'_';'r_]

[

‘.

> e
\"I
1‘- “-"

LR A Y
'
LI N

y AL PEAS
A —) e

s
"l ll-

A

4.1.4 Consider Costs (Step 4)

In step 4, relative costs associated with specifying, designing, implementing, and
measuring quality are explored. Relative costs with respect to a single quality factor
are estimated for different parts of the life cycle, and the influence of factor
interrelationships on relative costs are considered. The purpose of considering relative
costs for factors is to enable a final decision on quality goals based on cost variations
estimated for the factors chosen. The purpose is not to estimate life-cycle costs.

When using software QM technology in acquiring a product, additional costs are
associated with specifying quality requirements, allocating those requirements to more
detailed levels of requirements and design, designing and building quality into the
product, and evaluating the quality level achieved for the product. There are also
potential benefits when using QM technology. Benefits include an increased awareness
of quality throughout the life cycle, higher quality products, early problem detection,
fewer problems or errors, and less effort. Although difficult to quantify, these benefits
are related to cost or cost avoidance. Costs and benefits will vary for different factors,
different factor combinations, and different activities within the life cycle. Other
benefits are also possible, including reduced risk. Costs and benefits for system
acquisition phases are considered in the following paragraphs; details for each factor are
considered later in this step.

4.1.4.1 Life-Cycle Quality Costs and Benefits

Table 4.1.4-1 summarizes potential quality costs and benefits for three system
acquisition phases: demonstration and validation, full-scale development (FSD), and
production and deployment. Because these potential costs and benefits are related to
software, the software-related activities and phases are shown above the system
acquisition phases. FSD is shown in two parts to further distinguish costs and benefits.
A separate column is shown for adaptation of a product for a new use (e.g., expanded
requirements, new application); acquisition phases are repeated as necessary.

The following paragraph describes the potential costs and benefits for software activities
described in Table 4.1.4-1. Cost ranges for these activities are illustrated in Figure
4.1.4-1. Separate cost ranges are given for each factor. The cost ranges are from -3 to

........

e

~
B

. -

“y v o=
e o -,
2*
(4

v oag
T
-ty
.
'ﬂ'.'
y 's1.

’

)
'l
A

®
2

’or

Py
L I

)

PA

"

¢
ey

» p R T e e T TR T LT T T T Ve 1T e L, T TR e LT RT RMTRTR RIS USRI R TETT AT AT T EWTTW ETW ¥ Y Y TR TN r—
Kl

Lo

&I
N
! .\:

R
R
" -

- .

{ Qb_ﬂ"-.v
_‘s" :\.‘: %
A
‘. s

-j :

F \‘ Jysem Acqun‘s'i':::: Full Scale Development ;E;EE ¢
L Nt

Factor Demonstration & Validation cox Production & Deployment t\':: :

b - e
, PERFORMANCE: 7 - -

3 ‘ Efficiency Avg *! %//////////////% %///////////////// 7) %

O Cost 4

- 2 N

" 3 %«_ﬂ.{
e .3 AN n‘;?“t.l
: +2 Y
o i we] I i by
‘ 2 tegrity Cost .) ::{.ﬁn s
#: 2 \;}-:
::: 2 }.j:':

+2 7
Yy o e UL b
e Survivabilit Cost V22222222772 Y
= S . &
o 3 i

j +2 % A % .

‘ ? Usability Avg ’ L[%/////m //{ = §
o, Cost ¢
2 : i
t L
». o]
o s
Z-_j; Figure 4.1.4-1 Quality Factor Life-Cycle Cost Ranges E;:;:_‘]
- o
) ::,

it

d.‘

.

2

Ay
P A0 A7 RIRE O
=
]
P~
o
Yo ? :
o',A'_l .

Acquisit
System qu-:uh-‘o‘: Full Scale Development

Factor Demomstration & Validation O Production & Deployment

DESIGN:
.
*2

’; 7 zzzzz2z2z2222:9 sz zZz2ZZ2 222

Correctness 2;?‘ . A
r 7
2 |
+3
+2
Maintainabiiity Avg 01 W////
ventabiy - Con .i R
-2
3
Figure 4.1.4-1 Quality Factor Life-Cycle Cost Ranges (continued) i
R
22 1
i
v
) ..
IR
e
*2:%
0
RaReL
?>
5
At
“ .\..
4~41 A
: \}
b 3
9 .
s . R T T e P PR . . R _....._<.._..,““\‘\ - . ~‘.‘\b
.‘J: ;f;;",;:' - tf.-,-.:)_’:-:_ ’.’.-"“:',‘-’_ o G \'"‘{3 v, v “.\..! ._".?v. }: \q:“ \,‘ N \ \ . ..f \';; :\;-:Jn_:j :"\‘: KR \ -. . .;:\ ::‘.:: :\:‘\:;

A

b)

4
|}

v
-

5> o

P

3ystem A‘qm;ly:l:;: Fult Scale Development
Demonstration & COR Production & (Product
Factor Validation < Deployment Adaptation)
ADAPTATION:
.2 %
Expandability Avg 00' //////////////% ;
Fleubility Cost

-2
-3

+2

-1

Interoperability Avg g
Cost

iy 2 .
eusability Cost ; Wﬁ% %///////////%

Figure 4.1.4-1 Quality Factor Life-Cycle Cost Ranges (continued)

........
. e e el e

-_'..4
18
i3

et el e
et iaiR

RS

DI o e Y .
AR R eORY:
"’)“F "f'

i

4 T
% ‘ +3 and are relative estimates based on additional quality activities that should be E{:
: performed and on some benefits that are obvious for individual factors. Only R
) software-related benefits are considered; other possible benefits (e.g., reduced risk,
reduced loss of aircraft, and reduced system maintenance time.) are not. *
N TN
Y : - , : 43
g Baseline cost (average cost) shown in Figure 4.1.4-1 reflects cost if the quality factor T
was not emphasized in the life cycle and only a nominal amount of quality was present. .
;:‘ For example, the level of quality present resulted only from project development 3: :
; 3 standards or from common practices of the development team. The cost ranges reflect E :
w-:! the assumption that only one factor has been specified (i.e., no positive or negative 'N .
interactions between factors). The effects of factor interactions with respect to cost 9
.::: are explored later in this section. To relate relative cost ranges in Figure 4.1.4-1 to b h
costs for the project under consideration, estimate baseline cost for each acquisition &z‘.
phase and baseline cost variations due to quality factors by examining the quality NG
) _‘% considerations noted in the following paragraphs. A typical correlation would be that the =
‘{ cost range values correspond to percentages of cost for an acquisition phase. For ak
:;3-_2 example, specifying a high efficiency level would add up to 1% of the total cost of "
::z:-‘ demonstration and validation for a command and control application. An example
i calculation for cost variations is given later in this section. ‘
nS a. Demonstration and Validation R
.,-i: During demonstration and validation, software quality requirements are identified, Yy
") specified, refined, and allocated to individual CSCIs. Early activities include g
o specifying quality goals, coordinating with interfacing organizations in determining E‘:.:‘n;
:E:: quality needs, and coordinating the consistency of quality requirements with ,:;:.
\:: : technical performance and design requirements. As further knowledge of the 5?‘0‘:
(system is gained, requirements, including software quality requirements, should be .‘—
reviewed and refined; and quality requirements which have been levied against >§
:.i‘:; system-level functions and software-unique functions will be allocated to individual :
‘}*Z; CSClIs performing those functions. As specifications are released, quality metrics «.:{
‘-'f are applied to the specifications, and the achieved quality level is assessed. L_. _ '
i f-:‘;'
:J The cost range for all factors is from above zero to +1. Costs are likely to be on the gc\
e low end for small, simple projects and on the high end for large, more complex P!
" projects for which quality requirements are more difficult to ascertain. ‘

. .
Sfe e

. [R RN) - RS “.
R SRR AR NTALY
RCRL CX P :ﬁ_-_{,__-tf". A
eSS, et
LN) };\

-y T N N o I R TN N R R T N R UTTIVTL N VUM U WLY L AU W IR IO oW LY

The potential benefit at this stage is an increased awareness of software quality
considerations by using QM technology at the same time that technical requirements
are being examined. These activities can complement each other and result in a
comprehensive set of requirements and better quality software (and system)
products (e.g., requirements specifications). If this phase includes designing and
building a portion of the software and if quality requirements are also imposed on
this software, there are additional costs. These costs are more typical of those
incurred during FSD and are not reflected in the cost range estimates for this phase.
An added benefit from this activity is early problem detection.

b. Full-Scale Development—Pre-CDR
The pre-CDR portion of FSD includes the latter portion of the software

»

requirements analysis phase and the software design phases. During the latter -

. ~
portion of software requirements analysis, quality requirements are allocated to IS
e
IR

individual CSCIs and software functions and are checked for consistency with

technical performance and design requirements. During the design phases, software

g . oge
A R A
e %t e rh
. R
- FPE A
. e
L. “ » ey
D » e

quality requirements are allocated and assigned to successively lower design levels

(i.e., top-level design and detailed design). Specified quality factors are emphasized

"v’{m

in the design; and at each formal review when a software product is released,

metrics are applied to the products, and achieved quality is assessed.

A e ;
Vo K . [
. . [P "
. ’ . . 0 i
AR RIS
aan el PR

The cost range for all factors, except correctness, is from +% to +2. Designing
quality into software is the major portion of additional cost. For correctness, the
cost range is from above zero to +1. For correctness, the cost range is less because
quality is not built into software—design emphasis is on completeness, consistency,

and traceability.

Potential benefits include continued increased awareness of quality considerations in
software design, higher quality products at each design stage, and early problem
detection by applying metrics to each product.

c. Full-Scale Development—Post-CDR
During the post-CDR portion of FSD, quality metrics are applied to incremental

versions of software and to the final product. The cost range varies for different

factors.

. e
Sl

a,

-

CX s

g
“ gl e b eV s 2,

«
Y

X
LNy

. .
s

e —
,l- l‘ " I' I'
PAE AR

Y P

The cost range for efficiency is from +% to +2. Efficient software tends to be more
error prone and more costly to verify.

The cost range for integrity is from above zero to +1%. The additional code to
perform access ¢ontrol and access auditing requires additional verification efforts.

The cost range for reliability and survivability is the same—from -1 (cost avoidance)
to +1%. Additional verification effort is required because of increased emphasis on
such things as accuracy, anomaly management, and reconfigurability. These
additional costs can be offset by fewer errors and by automated software response
to certain error conditions (because of emphasis on error handling and error

avoidance during design).

The cost range for usability is from +% to +2. Additional verification effort is
required because of increased emphasis on operability and I/O communicativeness.

The cost range for correctness is from below zero to -l1%. Emphasizing correct
software during design results in fewer problems related to incompleted designs,

misinterpretation of requirements, and inconsistencies within the design.

The cost range for maintainability and verifiability is from below zero to -1. Design

emphasis on verifiable, maintainable software reduces testing complexity and

simplifies locating and fixing errors.

The cost range for the adaptation factors expandability, flexibility, portability, and

reusability is from +% to -l. Some characteristics such as generality and
augmentability add to the volume of code to be tested and increase the likelihood of
errors. This cost is offset by characteristics such as modularity, self-
descriptiveness, and simplicity, all of which simplify locating and fixing errors and

aid in incorporating software changes during testing.

The cost range for interoperability is from +% to +2. Additional effort is required to

verify software commonality and compatibility with interfacing systems.

';'.:\"“
*, »
» r
" Iy
NRR A

AP

~ i v v WLy " g VR YRR 4 T W T ml A m e e e . P Ty
. T TR U T T T TN Y - g Pl Yie S N A T Rl L P L S S At I S R I AL B L S SN T i Tt i & SRt s

IS
AP

NE;

Y

n"uJ

'. 4 I3

;_,:}. Potential benefits during the post-CDR portion of FSD are an increased awareness
1

E-::-‘ of quality considerations in software verification, higher quality software versions
-.\:

during testing (advantages for individual factors are noted in the above paragraphs),
early problem detection by applying metrics, and fewer problems and errors because
of increased emphasis on quality. Another possible benefit is that less effort is
expended during this phase; this will depend on factor selection and on where actual
costs fall within the cost ranges. Still another possible benefit is reduced risk
because of greater emphasis on quality.

[, Production and Deployment
During production and deployment, the system is deployed into the field, and the
software begins operation and maintenance. Software-related activities include
operating the software, training personnel to use it, locating and fixing errors, and
incorporating small changes. (Major changes, new applications, and new

environments are considered under product adaptation.)

The cost range for efficiency is from above zero to +1. Highly efficient software

;f:::' tends to be more error prone (e.g., tightly written code often lacks modularity and

tends to be more complex).

The cost range for integrity is from below zero to -1. Software with access

limitations is likely to have fewer failures.

The cost range for reliability and survivability is from -% to -2. Reliable, survivable

software is likely to have fewer errors and failures.

The cost range for usability is from below zero to -1. Job time and duration of

B)
e

training are likely to be less for usable software.

A
KR

v &

The cost range for correctness is from -1 to -3. Software with a high degree of

v
[!
[
e
A

X

correctness is less likely to have problems related to incomplete designs,

inconsistencies within the design, and misinterpretation of requirements. These

N Pl

problems can be expensive to correct after system deployment.

g
INCTN:
i 3 'A.'l

. €) LT X
A PN
[T A, [t}

L] ‘..-'..lv
. ORI

S
s

% s
Ta's w

[}
"'.‘ {.

[}
LN

“~

LY
4-46 i

‘:

ll'.‘l .‘l }l

e

4,6, 5, 0, S Ny 4,
L R A

g .
'a
Elal 2

Selaw

A WL

R f.'.."'“ M

The cost range for maintainability and verifiability is from below zero to -l.

Problems encountered after deployment are likely to be easier to locate and
solutions easier to verify if the software is verifiable and maintainable. (Note that
system maintainability usually includes the concept of improving the system by
changing or expanding it. These capabilities are provided through software
flexibility and expandability.)

The cost range for expandability and flexibility is from below zero to -2. Software
characteristics such as generality, modularity, self-descriptiveness, and simplicity
simplify locating and fixing errors, incorporating small changes into the software,
and expanding basic software capabilities. Cost avoidance will vary depending on
the quantity of expected changes and/or expansions.

The cost -~ange for interoperability is from below zero to -2. Interfacing software

with a system whose characteristics were known during development is simplified
considerably. Cost avoidance will vary depending on the quantity of expected
inter facing systems.

The cost range for portability and reusability is from below zero to -1. These

factors are usually associated with major changes to the basic system or with
redeployment of a new system that uses components from the original system; these
are discussed under product adaptation. However, when most characteristics of
these factors are present, the tasks of maintaining the software and incorporating
small changes during production and deployment are simpler. Cost avoidance will
vary depending on the expected quantity of changes.

Product Adaptation

Product adaptation is intended to address major changes to the software of an
existing system for the same application, reuse of all or part of the software of an
existing system in a new application, use of the software of an existing system in a
new environment (i.e., hardware or operating system) for the same or a similar
application, and converting the software of an existing system to interface with
software of ancther system (when interface requirements are unknown during the

development cycle). These efforts are all major changes to an existing system, and

it is assumed t'.at some or all of the development phases will be repeated before

g
¢ v

»

LY 3
T
.

[t
s

l\—:#

K (i
XCR

.!‘ W,

- .
d 1
A YL
f‘ ot -‘ P l‘ l‘ ‘.

Table 4.1.4-2 Cost Variations Calculation

Form - Initial Estimate

'iFE'CYC#IE Ac;'VATS‘E'; SYSTEMSOF WARE SOFTWARE REQUIREMENTS CODE & UNIT TESTING PRODUCTION AND
C9U.:.SI T ON OH T REQUIREMENTS ANALYSIS THROUGH DETAILED THROUGH OPERATIONAL DEPLOYMENT
% TOTAL COS ANALYSIS DESIGN TESTING & EVALUATION
DEMONSTRATION AND FULL SCALE DEVELOPMENT PRODUCTION AND
VALIDATION CDR DEPLOYMENT
QUALITY FACTOR/

GOAL 5% 10% 15% 70%
EFFICIENCY G 1 +14 +14 +4
INTEGRITY E +1 +2 + 14 -1
RELIABILITY t 1 +2 +4 -2
SURVIVABILITY N/A
USABILITY £ +1 +2 +2 -1
CORRECTNESS € +1 +1 -3 3
MAINTAINABILITY 3 +1 2 -3 -1
VERIFIABILITY E +1 + 13 -4 -4
EXPANDABILITY G +1 + 13 -3 -1
FLEXIBILITY G +1 + 13 -4 -
INTEROPERABILITY G +1 + 13 +13 -2
PORTABILITY N/A
REUSABILITY NA
VARIATION TOTALS

4-48

i1

»
]
.

g
T

o

STy el
4
. :.
lats

AR AN

B VR

N N
b"‘

SRR
[
R A

L.
HPaR

L

o)
Ot

1

Rt
L2 A

P
v e
R,

(Ypce

:

.
[.':l -"
P v

|

D
.

w. o e Ty

Y .‘.",..:,\ ;._- e
VAR } WP BN W

production and deployment. Cost ranges for the performance and design quality
factors will be similar to those noted for FSD. Cost ranges for the adaptation
quality factors are noted in the product adaptation column. The cost ranges show
the potential for considerable savings when these qualities have been built into the

software.
§.1.4.2 Cost Variation Estimates

At this point an initial estimate is made of cost variations for each factor, for each
acquisition phase. This initial estimate should consider each factor separately (i.e., do
not consider factor interactions). The effects of factor interactions will be considered

later in this section.

Table 4.1.4-2 shows software cost variations estimated due to quality factors assigned to
the surveillance and identification function of the example system. The purpose of
estimating cost variations is to view the total influence of quality factors over the
software life cycle. Estimates of software cost distribution over life-cycle phases
should be made and percentages entered on the form. Quality goals, (refined in step 3,
see Tbl. 4.1.3-5) should be entered next to the appropriate factor for easy reference.
Next, enter a cost variation estimate for each factor in each phase using Figure 4.1.4-1

and rationale described in the preceding paragraphs as guidelines.

Cost distribution for surveillance and identification software in the example system
follows the general cost trend for the total system: 5% of the total cost is in
demonstration and validation, 25% is in FSD—10% pre-CDR and 15% post-CDR, and 70%
is in production and deployment. Concept exploration costs were not considered; these

costs are normally a very small percentage.

Cost distribution for the example system is typical of current command and control
systems. Production and deployment costs usually range from 60% to 80% of the total.
Post-CDR costs are usually higher than pre-CDR costs for FSD.

The following paragraphs describe the rationale for cost variation entries by phase in

Table 4.1.4-2. These estimates are conservative.

‘..".\ «

R T I

LR .
- '.‘i'.'. L A R
Pol g W S P AP SO P S

N R N

I I e Y B
e
r . "y

I §

.
o

a.

| SR
\

]
A
(I S

L2\ S0 S0 DA S e e 4 4

T v
_aA ‘-‘r\‘:}. LA
PR I s

Dty
QRN

B S50 Az N4n Mme den M Mea § oniiiea Bun-acs o san St han eg-gvecive e ihie Shen Seeciivie i bAe Jhda RO RIS A RDENCIEL A AL S

Demonstration and Validation

The high end .af the cost range, +1, was entered for each factor. This is a large,
complex project, and costs for specifying the software quality requirements are
likely to be independent of factor and goal level. In the example system, quality
goal requirements were not levied on any prototype software; there were no

additional quality-related costs.

Full-Scale Development—Pre-CDR

Costs during this period are both factor and goal dependent. The rationale for all
entries was the same. If the goal is excellent, a value reflecting the high end of the
cost range was entered for that factor. For example, the goal for reliability is
excellent, and the top end of the cost range, +2, was entered. If the goal is good, a
value near the middle of the cost range was entered for the factor. For example,
the goal for efficiency is good and the middle of the cost range is 1l%; 1% was

entered.

Full-Scale Development—Post-CDR

Costs during this period are also factor and goal dependent. For factors with goals
of good, entries were made reflecting a value of near the middle of the cost range.
For integrity and usability, with goals of excellent, entries were made reflecting a
value at the top end of the cost range. For reliability, correctness, and
maintainability, with goals of excellent, entries were made reflecting a value near

the middle of the cost range because fewer errors were likely.

Production and Deployment

Efficiency is the only factor showing additional costs for this period; all other
factors are below zero (cost avoidance). The entry for efficiency, with a goal of
good, was +%. Entries for other factors with goals of good reflected a value near
the middle of the (negative) cost range. Entries for factors with goals of excellent
were at the extreme of the (negative} cost range because the full benefits of high

quality levels were expected.

Costs for product adaptation can also be estimated at this time because these costs may
influence the specified quality levels of certain factors.

. AT
ES et -
AR UL .

e v -
- -

\ PRI Do,
PPN . S NS,

B N T B LT S T

s . -~ . - "‘s'A" RN
B I P Nt
SN T \‘

PRI S v e
P Ce e .
. ’ . Sl
L Lo e e
— T S AWER L W

P

L N T S S L § . . Lt atet e YN .
L - L. A P L) T S i e I ST AR P
(U, VN) RN S TR DN T TR TN S ATIRCTNIACE Y Wy S 0 I s Wy

« % | . v PP T T T TR L T ey L o0 3 o e o A o i g v e el 6 annd e B b ek il 2 le dat Mg B YT IRl R sl et A A S

i
Ly
a3 :
& 4.1.8.3 Cost Effects of Factor Interrelationships ol
N T
3
At this time, the effects of factor interrelationships on relative costs should be b
i considered, and the initial cost variation estimates should be refined. Factor interrela- .
:‘; tionships have both positive and negative effects on cost just as they affect each other. "'
‘ Figure 4.1.4-2 shows the relative cost effects of positive factor interactions. The cost
> ranges shown are the same as those shown in Figure 4.1.4-1; arrows have been added for
~j.,‘ the appropriate phases to indicate the direction of the effect of interactions.
?_« Interrelationships among factors were summarized in Tables 2.2-2 and 4.1.3-1. The
::\ following paragraphs summarize the effects on relative costs by acquisition phase.
o a. Demonstration and Validation
,{E: During this phase, many activities require only a little more time to perform for
K several factors as to perform for a single factor. For this reason, costs for an
. individual factor tend to decrease as the number of factors increases.
3
5 b. Full-Scale Development—Pre-CDR
’ During this period, the primary positive effect is shared criteria among factors.
These characteristics are built into the software only once. The effect is reduced
cost for specified factors sharing criteria. Three factors—efficiency, integrity, and
::'f', usability—have no shared criteria. In the figure efficiency and integrity do not
, indicate a possibility of cost reduction. Usability is shown with a possible reduced
w cost range because of the positive effect of good anomaly management on reducing
ﬁ_ efforts for providing operable software. All other factors share criteria and are

L B

L3

shown as having a possible cost-range reduction.

. x":
Loy

T

c. Full-Scale Development—Post-CDR

During this period, the primary positive effect is a reduced number of errors due to

high reliability, correctness, and maintainability and due to errors automatically

» 0]

e Oy,

e corrected by software with good anomaly management. All factors, except
correctness, are shown with a possible reduced cost range; correctness is not
o affected by number of errors, and there is no additional effort associated with

correctness after the design phases.

n --_-_\~__-.-,.\
e e T e L LT N

-V g,
[N S YA
B L -, w
-) \ L G LA
TR A B AN n‘j’

o4 X d‘\ e
3 R
G)

o]
> W
g ._J‘ !
: S
X
N_-? System A(qm;::: Full Scale Development i"-;‘: ‘,
v 5
’ ::: Factor Demonstration & Validation CDV“ Production & Deployment ¢ .“:“P‘
PERFORMANCE : l ‘ l \-
: *2 4 7 q
e Av ”o %/////////////////ﬁ %////////////////% A -
iciency Cost ".'-:
1 2 ‘L}-
N 3 L

e S N, -.,}

l | &
T b %/////%//////% 1 j
o s
: l S

N DT -

N M 344 .‘;"_'o

Reliabirty Avg g
Survivabuity Cost

v_',-.‘ Ly Avg X
~ Usabilit 0 g {
< ol ot) Pl
o) RO\
- ; o
o,
A
. - . . R
Figure 4.1.4-2 Cost Effects of Positive Factor Interrelationships ?.-;-.'f_
Ay
bt
iy
F{(-
3¢
N
'._r‘
4-52
52
T E S R PRI PN S FO . "o e ~
WOLRIIZ, S ':-:*"Pd;)’ g ,-.:z(:r-.‘f':r ";:T-;'_.- IS NN ‘;: L ’«,f«'{:"-.{-.f, -----
Bl ; *a [N i - . s BRI A SR AL
A T B 0 OO ANCEI ek bi Y Y CeraYeregeriei S,

System Acquisition
Pha:

Full Scale Development

e . ,
: | e —
a0 | |

+1
Maintainability Avg

Verifiability Cost

Bk

V0000200220 772722222772, 22)

Figure 4.1.4-2 Cost Effects of Positive Factor Interrelationships (continued)

I e e - an r (]

ol

g g 2l

¥

’, 'y

o e e = v i

-
¥ 8
vy

b

g

Grrred |
P (1

2 g
.
£

-

a8
ot

‘,’“r'
Lt Pairhd
g

P gl gt o §

-
3

3 T e

8'a 4 s o a"a

b o

b A, A

km,

»,
>,

-I’

interoperability Avg
Cost

-t

-2

-3

+*

+*2

*!
Portability Avg o
Reusability Cost

V722222222

System A‘q“';',::: Full Scale Development
, o ¢ st | e,
actor 2
ADAPTATION: l
3ot Lo
Expandability Av9 ’o‘ %/////////////% %W
Flenibility Cos % %,
exbiity ; 7777, (I
3 l l
2 l y
% Nl R

!

W

...

}

A V722222272

Figure 4.1.4-2 Cost Effects of Positive Factor Interrelationships (continued)

\"l‘ﬁ

-F.h ‘
g,

4-’;'.';.: \.‘: 2 4 - i-‘§.$t ?‘%}";}\g ’

"- ﬁ'

-g -' ‘-'\

A
"
BRd

Yags
B

ReCR
A AN

r

AL
. K 4
NS

| o St
D RN

B vty ‘t‘ .u. b

-
)
st

N

w ..

d.

e.

Production and Deployment

During this period, the primary positive effect is again a reduced number of errors.
All factors, except correctness, are shown with a possible reduced cost range for the
same reasons as noted in c.

Product Adaptation

Product adaptation is intended to address major changes to an existing system, and
it is assumed that some or all development phases will be repeated before
production and deployment. The positive effects on cost ranges for the performance
and design quality factors are the same as those described for the development
phases. All adaptation quality factors are shown with possible reduced cost ranges
in the product adaptation column for the same reasons as noted above.

Figure 4.1.4-3 shows the cost effects of negative factor interrelationships. The cost

ranges are the same as shown in Figure 4.1.4-1; arrows have been added to indicate the

direction of the effect of interactions. The following paragraphs summarize negative

effects on relative costs by acquisition phase.

a.

Demonstration and Validation
No negative effects are shown for this phase because costs are predominantly

independent of factor.

Full-Scale Development—Pre-CDR

During this period, only usability, correctness, and interoperability are shown as
having no possible negative effect on the cost range because these are the only
factors having no possible conflict with other factors. All other factors are shown
as having a possible negative effect on cost range due to conflicts.

Full-Scale Development—Post-CDR
During this period, only usability, correctness, and interoperability are shown as
having no possible negative effect on cost range.

Production and Deployment
During this period, only usability, correctness, and interoperability are shown as

having no possible negative effect on cost range.

[}
.

'.:l
T
v

‘s
RN
fatala

. e e
o
LI ‘.‘- "I
-
aa’s

3

|
N

‘a

.'::I{

LI
. « 0 » -
- . - »
L-l' !' . Ve .l

i

T

Factor

System Acquisition
4 “ Phase Full Scale Development

Demonstration & Validation Production & Deployment

Efficiency

Integrity

Retiabtlity
Survivability

Usability

PERFORMANCE:

Avg
Cost 0

Avg

Cost

+3
+2

L3]

S ———(
! T

/////

f/// Gz

-1
-2

-3
+3

+2

+1

ey
Cost ; V7272 020002000 %////////////////%
Avg :: [7272222222022 / m W%

V2222722202247
2
-3

—
—=
I
|

iy

Figure 4.1.4-3 Cost Effects of Negative Factor Interrelationships

=3 lad - n s ‘-
P) e Rl 2, d AR
[Ity by Ty . L 1608 A v
. R ;,‘n,_ AL h Ty 5 »
: R R £ 2T e
N B i . PR [y
M & .‘.‘1 "’_ L S N s gt 4

IS
g
s Yy

2
Lot 'J g

- A

. .. .
BRI e
0 3
! o A
" o
AR PO i
PP ST WO) X

Sysem A‘qm;::: Full Scale Development
Factor Demonstration & Validation Cl;; Production & Deployment
DESIGN:
*
+2

Avg

Correctness

-2
-3
+3

Maintanabitity Avg:: W///////ﬁ%‘% T T

vertabiy - Cost © 7 .

.z
3

Figure 4.1.4-3 Cost Effects of Negative Factor Interrelationships (continued)

EAE ALY TS T L T A A e T e e R

» SR RS st RS NN
‘u‘ :\." e ~ 0 W S e -".\".:-"\-:: . k\-u el ‘- \‘ =~
- ,

Nt - X - Jq
A 4‘.&’-.\1‘1&&5&2’& '-

Y ‘;x)'.

T e
LTy]
s v

'y

PLENN,

'
4
+

[}

S o R -%‘«1

LY,

System Acquisition

Phase full Scale Development
Demonstration & Production & {Product
Factor Validation Cl"); Oeployment Adaptation)
ADAPTATION: T
*

-} e | ! T

Expandability Avg " :///////////////////////////
Flembibity — Cost 772777 77 77

-1
-2
-3

. o T, VT

)
2
:

Interoperabilty Avg : T | Y

Figure 4.1.4-3 Cost Effects of Negative Factor Interrelationships (continued)

St T ST A R SO S R A A T S UL N N R A S R S AT e R I
SOk :1-'.\ o .*-'f":“x":\":‘\{"- K "'-.\-‘f**' - "'.-":" {‘_.}_.\ ORI e N A A AR SE
SOMTRERCRN 1.‘-\,:: }Q* .".“i S T?{;'\‘I: AN e ';,s.‘?);- T el Cand e

' .\.J,tc’.kf;‘.'-:.'é.ﬁ..t W Ca ;1‘:.-: L {‘@.&' >, .

- A A

R

WY

Product Adaptaticn

Product adaptation is intended to address major changes to an existing system, and
it is assumed that some or all development phases will be repeated before
production and deployment. The negative effects on cost range for the performance
and design quality factors are the same as those effects for the development phases.
Only interoperability is shown as having no possible negative effect on cost range in

the product adaptation column.

Figure 4.1.4-3 considers only the effects of negative factor interrelationships. The

information in this figure reflects the assumption that complementary quality factors

(see sec. 4.1.2.4) have been specified where appropriate. If complementary factors have

not been specified, further negative effects are possible.

Table 4.1.4-3 shows the cost variation estimates for surveillance and identification
software of the example system. The estimates have been refined after considering
positive and negative interactions of specified factors, summarized in Table 4.1.3-4.
Rationale described in the preceding paragraphs was used for changing initial estimates.
Changes can be noted by an asterisk. The following paragraphs summarize refined

estimates by acquisition phase.

Demonstration and Validation

All entries were changed to % because of the quantity of factors.

Full-Scale Development—Pre-CDR

Efficiency was raised to +2, the top end of the cost range, because of conflicts with
other factors. Usability, expandability, flexibility, and interoperability were
lowered by % because of lack of conflict with other factors or shared criteria.

Full-Scale Development—Post-CDR

Efficiency was raised to +2 because the large number of conflicts with other factors
would more than offset any cost reduction due to fewer errors. Usability and
interoperability were reduced by % due to the effects of fewer errors and lack of

conflicts.

ol Rad "R WA R "I s M R R R A S e B el vn _au DAk S bl i S S04

Cle e BB 15 T)

e I Har e

Table 4.1.4-3 Cost Variations Calculation Form - Refined Estimate

CRRN"0 e Siard

LIFE-CYCLE ACTIVITY/ SYSTEM.SOF TWARE SOFTWARE REQUIREMENTS CODE & UNIT TESTING PRODUCTION AND
ACQUISITION PHASE/ REQUIREMENTS ANALYSIS THROUGH DETAILED | THF JUGH OPERATIONAL DEPLOYMENT
% TOTAL COST ANALYSIS DESIGN TESTING & EVALUATION
DEMONSTRATION AND FULL SCALE DEVELOPMENT PRODUCTION AND
VALIDATION CDR DEPLOYMENT
QUALITY FACTOR/
GOAL 5% 10% 15% 70%
1
EFFICIENCY G +F * +2 . +2 . +1 .
INTEGRITY E +¥ * +2 + 15 -1
1
RELIABILITY E +¥ * +2 +3 -2
SURVIVABILITY N/A
1
USABILITY E +F * +2 130t -1
CORRECTNESS E +¥ * +1 -+ -3
MAINTAINABILITY E +¥ * +2 -1 -1
VERIFIABILITY € +3 * + 13 -3 -3
1
EXPANDABILITY G +¥ * o1 * -3 -1
FLEXIBILITY G +3 * o1 * -3 -1
1 *
INTEROPERABILITY G +7 + 1 . +1 . -2
PORTASILITY N/A
REUSABILITY N/A
VARIATION TOTALS .5 + 153 +4 113

* = CHANGED

-

R
P

R e e N R

AR
..\\ ."‘,\{.\ B
Sean

AR TWANR

[
>

n

t 2 - -
e T AT

I
21

PA
.

. lv.'_)

d. Production and Deployment

Efficiency was raised by % due to the large number of conflicts with other
factors.

The variation totals are added for each column in Table 4.1.4-3. Potential costs are
highest for the FSD pre-CDR period; potential cost savings (avoidance) are shown for
production and deployment. If variation totals are assumed to represent percentages of
costs for that phase, an overall cost savings of approximately 5% is projected for the
total life cycle ((0.05x1.05) + (0.10x1.155) + (0.15x1.04)+ (0.70x0.885) = 0.0525 + 0.1155 +
0.156 + 0.6195 = 0.9435). This projected savings considers only software-related costs

and benefits; system-related cost avoidance has not been projected.

Potential cost savings for product adaptation for a new use were not considered here.
Although these types of costs and cost savings are outside the system life cycle, they
may influence decisions on quality level for some factors and should be considered if

possible.
4.1.4.4 Review of Quality Goals

At this time quality goals should be reviewed in light of life-cycle cost considerations of
this step and revised as necessary. Table 4.1.4-4 lists the final goals for the surveillance
and identification function of the example system. None of the goals were changed
(from Tbl. 4.1.3-5); however, cost limits were placed on the efforts for providing six of
the factors: efficiency, integrity, reliability, usability, maintainability, and verifiability.
These cost limits are primarily intended to limit the level of effort during design phases

when factor conflicts show the greatest effect.

Quality factor requirements should be specified quantitatively, as a value or value range,
and should reflect system and user needs and budget constraints. No industry standards
have been established, and judgement should be exercised when assigning values. Values
should not be unrealistically high because this situation can drain resources. However,
during the software development cycle, it is easier for the development contractor to
respond to lowering the goals than to raising the goals. We recommend using value
ranges and believe that the following ranges are realistic for a typical command and
control application: E—from 0.90 to I, G—from 0.80 to 0.89, and A—from 0.70 to 0.79.
Higher ranges for selected factors may be appropriate in acquisitions involving space

applications or nuclear armaments.

4-61

. -
RO

« _‘}_;_ RO
e T
»

Y‘]
.

.
P

4 A .
eadnd o s

"-‘.;i T o

P

.
.
e b B A Y

I
Ve

.
:r‘ll
V4
AR

e
.
o

. . .
I . Lt
PSR WU I S)

[

.t

l’lll

PR
L P v
’

L
K
)

'I
" “r
P

r

T
PR .

p——

, . s
[AT
ST L

A

s

R A o i A b B ot A A B IR e IE v N N T o A AR Nl N A A A A '_:'.' M . e -. .'--.'?‘"’.‘;':"-:'.-;"' .‘"'-"".‘:'-‘:'-"';'*r"]
wrerd
Table 4.1.4-4 Software Quality Factor Identification Form - Final Goals
PERFORMANCE DESIGN ADAPTATION
E- 4 qr |s Ju f€ IMm Jy Le {F {t ip IR [noterorcoal entaies
FoIN JE JU 15 JO A Je [x It IN [0 |€ [eaexcewent
F ¥ L R A |R | R P |3 T R u G=GOOD
FoJe Jo jv [e JROIN |y Ja X [E)T |s
C G la [t | E T £ N It R A [a [a=averace
SOFTWARE | R |B [V |t cC (A | D |8 |O |8 |8 {eiankornas
QUALITY E 1] A} T [oja A |! Pt] NOT IMPORTANT OR NOT
FACTOR NoJr e B |1 IN IN 18 |8 |L [E i |L |aepucasie
S U TE A L IR 1 1 |- costums requieo
Y T L S 18t {uv |7 la {y Iy - IRE
SYSTEM OR SOFTWARE-
v |t St [v JY 18 v |[¥
UNIQUE 1 L 8 |
FUNCTION Y MM L
T i
Y T
Y
SURVEILLANCE AND IDENTIFICATION G* |€* [E* [NA| E*|E E* {E G G G N/A| N/A
- 4-62
3

C phul L Aah Bl Al goi dd aa o a hice yde k' d ot hiae BincRdstS Ses - e s uR ad s (Rl chl uah el Rl Sen Sad endc s salh Sufe atedh Sd Shdk Sall &K el dlanl S IFR R S A S P S A AL SNCIL IR GRS SIVIE S S S

\’
:.-?j 4.2 SELECT AND SPECIFY QUALITY CRITERIA
N

Select and specify quality criteria is the second of three procedures for identifying
software quality requirements (see Fig. 4.0-3). This procedure consists of three steps:

o a. Select criteria.

ol b. Assign weighting formulas.

c. Consider interrelationships.

Steps 1 and 2 establish the relationships of criteria to factors. Step 3 considers the
feasibility of achieving quality factor goals established in Section 4.1 using these criteria
relationships.

4.2.1 Select Criteria (Step 1)

- Step | of this procedure is to identify all criteria which are attributes of each factor for :
which final goals were established in the previous procedure (see Sec. 4.1). Final goals

were established for 10 of the 13 quality factors for the example surveillance and
identification function (see Fig. 4.1.4-4). Use Table 3.2-1 to identify all criteria which :
are attributes of each applicable factor. For example, there are three criteria for -

reliability —accuracy, anomaly management, and simplicity.
4.2.2 Assign Weighting Formulas (Step 2)

Step 2 of this procedure is to assign a weighting formula for each applicable quality :
factor. A weighting formula shows a specific relationship between the factor and its :Zt‘
Y attribute criteria; each criterion is assigned a weighting value to indicate its percentage I:jj.{'
" contribution to the overall factor goal. Table 4.2-1 lists the weighting formulas for -
— factors of the surveillance and identification example. The formula for reliability
indicates the percentage contribution of three criteria: accuracy—40%, anomaly o
-~ management—30%, and simplicity —30%. '

A Weighting formulas are significant when scoring and when specifying requirements. NS

When scoring, a criterion score is multiplied by the weighting value in calculating a

£

A

factor score. A higher weighting value places more emphasis on a high criterion score in

achieving the factor scoring goal. A lower weighting value places less emphasis on Ko

'. " ?' o
>

LIS S
tate

: ". }l }t 4l
£
[}
(e
W

7
.. R
RS AT
A .".~.-'4'

A']f o o,
X

4

ke I GER Cin e S oon 4

B a .o o
PR T)
s et e)
ST e
. et

v T 7 ¥y Yy 11
,‘ly-.:.-.-
. . .

P
S .

TR Bl iR L RO AR o Palkd” S el SN~ 0 St aiad s e atel - ATl ~ i - p ik St Jaid aah V'v"","':-’."."!"—.*r"'t'
'

Vs

o

<4

Table 4.2-1

Criteria Weighting Formula Form - Initial Weighting

Factor

Weightin

g Formula

(EFFICIENCY)

0.1(EC) + 0.8(EP) + 0.1 (ES)

(INTEGRITY)

1.0 (SS)

(RELIABILITY)

0.4(AC) + 0.3(AM) + 0.3(SI

(SURVIVABILITY) N/A

= (AM) + (AU) + (DI} + (RE) + (M

0)

(USABILITY)

= 0.5(0OP) + 0.5(TN)

(CORRECTNESS)

= 0.4(CP) + 0.3(CS) + 0.3(TC)

(MAINTAINABILITY)

= 0.2(CS) + 0.2(VS) + 0.2(MO) + 0.2(SD) + 0.2 (S1)

(VERIFIABILITY)

0.25(VS) + 0.25(MO) + 0.25(SD) + 0.25(SI)

(EXPANDABILITY)

0.2 (AT) +0.2(GE) + 0(VR) + 0.2(MO) +0.2(SD) + 0.2 (SI)

(FLEXIBLITY)

= 0.25(GE) + 0.25(MO) + 0.25(SD) -+ 0.25(SI)

{INTEROPERABILITY)

= 0.2(CL) + 0.2(FO) + 0.2(ID) + 0.2(SY) + 0.2(MO)

(PORTABILITY) N/A

= (ID) + (MO) + (SD)

(REUSABILITY) N/A

= (AP) + {DO) + (FS) + (GE) + (ID) + (ST) + (MO) + (5D) + (5))

NOTE: () = Score

...........

AT et e -

LnSa sl

.... SN
oa ot g

A

.

o
.
'l

. i
IPYRPYEY W ey

9

. PR AR
e .

PR A
et

R AL]
. . P

L e B
o Sy R (M
AR s e T
s . rl i S

LIPSV IR v L PR

s

Y A I3
o

3 I A

o e

[R s
, .
- |. 'y -’ s -
PR S N
VRN NP W o

e,
PR
¢ s

»
s

PRI T T
PLF TS RERENER
P P . AR
P SN
P S PRI
et A bk L

.AA.A

¥
3

r
AR
Antad ok ALl

| g
S T - l. t

LN
. m

“="s

WM

achieving a high criterion score. When specifying requirements, weighting values

indicate the amount of emphasis on a software characteristic (criterion) in developing

R

the product.

System goals and requirements should be reviewed when assigning weighting values, and

any significant system needs should be reflected in weighting formulas. Weighting

WA A

formulas in Table 4.2-1 show approximately equal weighting for most criteria. There are

two exceptions. Virtuality (an attribute of expandability) is weighted zero; this criterion

L.
afalelel

is primarily applicable to networks and was not considered appropriate for the example

system. The criteria of efficiency are not weighted equally; processing effectiveness is

& a4
a.a

weighted much higher than communication and storage effectiveness. For the
surveillance and identification function, processing speed is far more critical than

communication speed and storage space.
e 4.2.3 Consider Interrelationships (Step 3)

Step 3 of this procedure considers the effect of positive and negative relationships
between criteria and factors on the feasibility of achieving quality factor goals. A
negative relationship between a criterion and factor may affect the feasibility of

achieving a high enough criterion score to satisfy the factor scoring goal which reflects

s
14

A

the system needs. Adjusting the weighting formulas communicates to the developer

desired areas of emphasis and areas where compromises can be made in software

»

o
&

characteristics for the sake of achieving the overall factor goal.

Table 4.2-2 shows revised weighting formulas for the example surveillance and

-
P

] =
[N T S B R

identification function. Formulas have been revised for four factors: maintainability,

verifiability, expandability, and flexibility. Changes were based on the interrelationships
shown in Table 4.1.3-1 and on rationale similar to that described in Table 4.1.3-3.
Generality is in conflict with three specified factors: efficiency, integrity, and
reliability. The weighting values for generality were lowered to 0.1 in the formulas for
expandability and flexibility. The message to the developer is that, although generality

is to be considered, lower scores will be tolerated because of significant conflicts.

Because weighting values for generality were lowered, weighting values for other

\
; criteria must be increased. For expandability, the weighting value for augmentability

)t

R

EAL
PRy v

e T,
A
',/..4,v‘

e 2 - -

NG

o

LTy s
A

Ny
N

»
O

T MR e T a T et e T T A T e v B TG T e T e B R

Table 4.2-2 Criteria Weighting Formula Form - Revised Weighting

. w ¥ £ F R 8

Factor Weighting Formula
(EFFICIENCY) = 0.1 (EC) + 0.8 (EP) + 0.1 (ES)
(INTEGRITY) = 1.0(S9S)

(RELIABILITY) = 0.4(AC) + 0.3(AM) + 0.3(SI)

(SURVIVABILITY) N/A

= (AM) + (AU) + (D1) + (RE) + (MO)

(USABILITY) = 0.5(0P) + 0.5(TN)

(CORRECTNESS) = 0.4(CP) + 0.3(CS) + 0.3(TC)

(MAINTAINABILITY) = 0.3*(CS) + 0.4*(VS) + 0.1*(MO) + 0.1*(SD) + 0.1* (SI)
(VERIFIABILITY) = 0.4* (VS) + 0.2* (MO) + 0.2* (SD) + 0.2*(Sl)

(EXPANDABILITY)

= 0.3* (AT) +0.1* (GE) + O (VR) + 0.2(MO) +0.2(SD) + 0.2 (S)

(FLEXIBLITY)

= 0.1* (GE) + 0.3*(MO) + 0.3*(SD) + 0.3* (SI)

(INTEROPERABLLITY)

= 0.2(CL) + 0.2(FO) + 0.2(1D) + 0.2(SY) + 0.2 (MQ)

(PORTABILITY) N/A

= (ID) + (MO) +(SD)

(REUSABILITY) N/A

= (AP) + (DO) + (FS) + (GE) + (ID) + (ST) + (MO) + (SD) + (SI)

NOTE: () = Score

* =Changed

] L

’
A

0
"

s
a_r
'Y L 4
~ s
-

:}"a

PeAOL
A

s
el

'j‘..‘-‘..\?' L

."‘.‘.t
’ 't.n
LN

vy e
N

LRI
" L.
.
e
SN
4 @ . PR

~e

4

YN

A R
R
LIS SIS W S WY 8

]

.
- &
P

[

:

o al

ERE R KD F I I N I DRt A, A M A ORI Sl Wt sl (i S gl i i il a0 aensd aog aued aes

was raised to 0.3 as this is the only one of the five criteria with no conflicts. For
flexibility, weighting values for the other three criteria were raised to 0.3. Each is only
in conflict with efficiency; and the factor goal is only good.

Weighting formulas for maintainability and verifiability were modified to compensate for
conflicts of modularity, self-descriptiveness, and simplicity with the factor efficiency.
Weighting values were lowered for these three criteria and were raised for consistency
and visibility, which have no conflicts.

The revised set of weighting formulas communicate the needs of the system and user to
the developer and incorporate special considerations based on the combination of quality
attributes selected.

4.3 SELECT AND QUALIFY QUALITY METRICS

Selecting and qualifying quality metrics is the third of three procedures for identifying
software quality requirements (see Fig. 4.0-3). In this procedure, specific metrics and
metric elements are selected to be used for evaluating achieved quality levels. Any
peculiarities of the system and application which affect metrics require qualification of
those metrics. This procedure should be performed by personnel familiar with the
application, the system, the software, software development methodology, and QM
technology.

This procedure consists of two steps:
a. Identify metrics.
b. Select and qualify metric elements.

8.3.1 Identify Metrics (Step 1)

Step 1 is to identify all metrics which are attributes of each criterion which was assigned
a weighting value greater than zero in the previous procedure (see Sec. 4.2). The
applicable criteria for the surveillance and identification example are listed in Table
4.2-2. All attribute metrics can be identified using Table 3.3-1, which lists all metrics
for each criteria.

.
-

-
2]
S,
Qe

,'l
Ayt

bt
i
.\

.

-~ i
»
-

R SR A A U i B R R S e E * . T
a0 gl S b wal el oudn shUi tau ta et fenl AanS SRl GUNELR 1 020 SRR B DR SRR PR L IERIC EREIOR S SRS R

R

v
.

it K

4.3.2 Select and Qualify Metric Elements (Step 2)

Pt s gi)
e g
s Be g,

Step 2 is to select specific metric elements which will be used for scoring system and

software products. Metric elements are listed in Appendix A on metric worksheets, in

question format. The qyuestions are generally applicable to command and control

.
.

sttty

applications. Some questions may not be applicable to a specific command and control
application. When selecting metric elements, include system-unique and design-unique
considerations such as:

J -"l“ 1.' Tm
Al.) s I

a. Whether system processors are configured as a centralized processor distributed

.-
2’ e
a7

.
“l .

system, or network.
b. Whether there is any parallel or concurrent processing.

Whether software is application or executive software.

0

-
l.‘

LA

K

-

»
»

All metrics and metric elements that are attributes of the weighted criteria in Table

NN
I.‘l

4.2-2 were selected to be used for scoring the surveillance and identification example,

with the following qualifications:

a. Some of the anomaly management metric elements refer to capabilities that are
normally provided by executive software. These metric elements will only be used
for scoring software providing those capabilities. Any deletion of metric elements
will be determined after release of CSCI specifications to which requirements from
the surveillance and identification function have been allocated. This qualification

avoids restricting the allocation of technical requirements and allows for changes in

computing architecture (e.g., surveillance and identification function implemented in

a separate processor).

b. A separate training function (mission training) has been specified at the system level,

and some capabilities referred to in the training metric elements may not be provided
by software for the surveillance and identification function. All training metric
elements will be used in scoring software for the surveillance and identification
function. However, data collection personnel may need to refer to other source
material (e.g., documentation for software implementing the mission training
function) to answer questions. This approach aids in ensuring that appropriate
capabilities are provided, since any deficiencies affect usability of software for
surveillance and identification.

c. Efficiency metrics will be applied selectively to software elements. Scores for some
software elements may only be monitored and not used in factor scoring. Rationale

et m I.‘
SR AT AT

e A

PLaR AR ng) oo < S I SNEAEPES (rotatulh NN [hENCig

| o4 W W W T R T g R T D i T T TN IRT Yy R IFTIRCNT S T E BT EITENE TS TE T E TN A MERUET L /wl st el e e ™ s oy,

for selecting software elements and applying these metrics will be determined prior
to software PDR.

When selecting metric elements do not not consider any system or design limitations,
such as:

a. Language capability limitations.

b. Documentation scheme limitations.

c. Lack of peripherals.

These limitations are by choice. Scoring should simply reflect the degree of presence of
a characteristic.

4.4 ASSESS COMPLIANCE WITH REQUIREMENTS

Assess compliance with requirements in the second of two processes for software quality
specification (see Fig. 4.0-1). The acquisition manager should perform this process near
the end of each software development phase, just prior to formal review. The purpose of
the process is to access compliance of development products with specified software
quality factor requirements in the system specification. Source materials are the
requirements specifications and Software Quality Evaluation Report (see App. C)
containing factor scoring and analyses for the development phase nearing completion and
scoring trends for the development cycle. Results of the manager's assessment are used

at the development review; action items may result.

The process consists of four procedures (see Fig. 4.0-4):
a. Review requirement allocations and evaluation formulas.
b. Review factor scores.

c. Review criteria scores.

d. Review metric and metric element scores.

8.5.1 Review Requirement Allocations and Evaluation Formulas

The purpose of this procedure is to determine the appropriateness of the allocation and

assignment of software quality factor requirements and of the derivation and use of
evaluation formulas. Paragraph 3.2 of the Software Quality Evaluation Report describes

AT
o KA
2 /:.'
P

w v L Lo e k- ki S Seci et St dha T T TR T T T T e N W e T Y

derivation of software quality evaluation formulas and allocation lists based on the
allocation of quality factor requirements to software elements (i.e., CSCls and units).
This paragraph and the requirement specifications should contain sufficient information
to enable the acquisition manager to (1) trace the allocation of requirements to
applicable software elements and (2) check derived evaluation formulas and allocation

lists against requirement dllocations.

The following list of items may help determine appropriateness of requirement

allocations from a quality factor perspective.

a. All software quality factor requirements should be allocated to at least one software
element.

b. Each software element to which software quality factor requirements have been
allocated should support the parent, system-level function.

c. Software elements to which software quality factor requirements have not been
allocated should not potentially affect the quality aspects specified for the parent,
system-level function.

d. The aggregate allocation of requirements should be complete and consistent with

respect to the overall system goals.

Evaluation formulas should simply reflect requirement allocations. All applicable
software elements should be included. Use of criteria, metrics, metric elements, and

criteria weighting should be consistent with specified requirements.
4.4.2 Review Factor Scores

The purpose of this procedure is to determine whether quality factor scores satisfy
factor goal requirements. Paragraph 3.4 of the Software Quality Evaluation Report
includes a comparison of quality factor scores with specified goals and an analyses of
variations. The acquisition manager should review this paragraph to determine whether

identified variations are acceptable.

Scoring variations may be acceptable for several reasons. Metrics may have been
applied to a draft release of documentation or code; scores for the draft release may be
acceptable, provided that scores for the final release reflect correction of deficiencies.
Quality factor requirements may be qualified by cost constraints, and scores may reflect

the highest possible score within budget constraints.

Ty -

Scoring should show an upward trend over the development cycle toward the target goal.

Paragraph 3.4 of the Software Quality Evaluation Report includes a scoring trend .:t\ ;

analyses.

Unacceptable scoring variations should be explored. The acquisition manager should

review paragraphs 3.4 and 3.5 of the Software Quality Evaluation Report which include

scoring variation analyses and corrective recommendations.

If factor scores are unacceptably low, the cause should be investigated. Possible causes

include (1) unrealistic goals, (2) low quality products, and (3) biased scoring. If factor

goals are determined to be unrealistically high, the process of specifying quality factor

requirements should be repeated and new goals established. If low quality products or

biased scoring are suspected, criterion and metric scoring should be reviewed. These

reviews are discussed in subsequent sections.

If factor scores are unexpectedly high, the cause should also be investigated. Possible

causes include (1) unanticipated synergism among factors, (2) high quality products, and i

(3) biased scoring. If synergism among factors is suspected, the process for specifying

quality factor requirements can be reviewed. High quality products and biased scoring

can be confirmed by reviewing criterion and metric scoring. “Efu
o)

Factor scores should be reviewed and any scoring patterns identified. Consistently high :.‘,_::.'.’

or low scoring could occur for one factor across software elements or could occur for

one software element across factors. Scoring patterns help identify the criteria and '~‘\1:-

software elements that should be reviewed to identify scoring variation causes. .‘}_.‘

4.8.3 Review Criteria Scores . {

The purpose of this procedure is to investigate possible causes of factor scoring .:.::

variations through reviewing criteria scoring. Criteria-level scoring involves both the '_:-fj::f:'

score for the criterion and the weighting value assigned in the factor weighting formula. [o

Weighting values used for scoring should be consistent with specified requirements. tﬁt\"

Weighting values for each factor formulas should sum to 1.0. e

X \AXER

AN,

R N X

...‘

UL

. e W

L]
o
i

o
(&

p -"’-“‘“r‘“.‘i"l'i <

«. 9

P
lLi ~’:

St N

L.
»

o

2ava

o K4 —

»,
#

-.] l’

s

| ROPRES

)

Criteria scores should be reviewed to identify scoring patterns. If a criterion score is
low for some CSCls and not others, the cause could be conflict with a factor. This
situation should have been anticipated during the specification process. Other scoring

patterns should be investigated by reviewing scores for attribute metrics.
4.4.4 Review Metric Scores

The purpose of this procedure is to investigate possible causes of factor scoring
variations through reviewing metric and metric element scoring. Possible causes of high

and low scores are product quality and biased scoring.

Scores can be biased by measurements of software characteristics that never or rarely
vary. Metric and metric element scores that are consistently low indicate a problem. If
scores are low across all software elements, the cause could be a design or
implementation technique widely used by the development contractor. Changing or
enforcing development standards can correct this situation. The cause could also be a
system or development limitation. For example, the language chosen may lack certain
capabilities or the documentation scheme may not provide adequate information. This
situation normally occurs by choice. Metric scoring shows which software

characteristics are lacking.

If metric and metric elements scores are low for only certain software elements (e.g.,
units), the likely cause is low quality for those elements. This can be confirmed by
reviewing the product. The cause could be practices by the development contractor.
Changing or enforcing development standards can correct this situation.

If metric or metric element scores are consistently high (e.g., all scores are 1.0) over all
software elements, the measured software characteristic does not vary. This could be
the result of good development practices by the contractor or a feature of the chosen
language. If the score can never vary (e.g., because of an automatic feature of the
compiler), the metric or metric element should be dropped. If the score varies but is
significantly higher than other scoring, consider continuing to monitor the metric score
but not using that score in factor calculations. Any low scoring would still be visible, but
consistently high scoring would not bias results.

-1
|

. ',‘
"v

5
N

b

'.V;"‘ . v
APl
FA

L
L4

[S Sl S g aeenc s v sl il aoud s’ atvii g Al ai” ol it Al iR~ R A - S ol i o i At gt Aab e Sat haid Lokt Skt il Jhel Y

et
Ry
.

LS
E
i
.
i

" T
v

Zr.

Y
t:}.:. If metric or metric element scores are high for only certain software elements (e.g.,
\,. units), the likely cause is high quality for those elements. This can be confirmed by

by

reviewing the product.

Visibility is perhaps the most significant benefit of reviewing quality scores. A small
variation in the range of scoring values (e.g., 0.5 vs 0.7) may not be as significant as the
total scoring picture. By using QM technology, the acquisition manager can periodically
view the total product from the perspective of any quality attribute that has been
measured. And desired changes can be communicated to the development contractor.
Scoring results help in identifying deficiencies and enable corrective action early in the
development cycle. Individual scores can vary because judgement is exercised when
collecting data. The total perspective provided by the aggregate of scoring results helps

minimize the significance of any human element.

-~
L4 ‘/I
.

.

‘'

.

P

P
- L
.

" ’
..
A

e R AR T

B G T GR

Y T LS O R R NN
e e et e P LR e
MR AL L S C AT e e L AR UGN

APPENDIX A
METRIC WORKSHEETS

(The contents of this appendix are in Vol. [ll, App. A.)

AY ST SRk

S
:‘_:. ‘p"‘..'v" .

Bt
¢

APPENDIX B

L ’ I € v v ey PP A Fpde 5y L
1\{‘,\7 r .\Ian .w.\b- .-.hn » 17-.. ..lr.‘.inn.n.’.&.; ‘\-»I-v\l-.iﬂ\- .vWﬂ.. N \.d.. %y

FACTOR SCORESHEETS

-~
o
a
Q.
<
=
—
-
(2}
>
c
ooy
[}
St
o
X
]
c
[T}
Q.
a.
L]
{7
ooy
£
ey
A
(o]
(7]
P
[=
(3]
b
c
[o]
(3]
Q
£
=
A

o e e t Y

B-1

4
CSCANENNE SN gt APeL Pl Res aC A S St et e et B s Sl 2ok e ST -t Bl Red A el el are 4 aue ‘avion A are ah aid b el and ol acts moa and ek anl o o o -

30
iy

7

2

-.l“

A
l'
i

"
N
.\

APPENDIX C
SOFTWARE QUALITY EVALUATION REPORT
Appendix C contains the specification of format and content for the Software Quality

Evaluation Report document. Information is in data item description (DID) format.
The Software Quality Evaluation Report is used to describe results of metric data

collection and analysis.

."v"t“-) "'.'v“v
woat St et

v e v v

'y

SRR

L

A
2T

5
"‘.:"‘A
@]

'
[

L Jat

e . g -~ e
AOAESOA AR ."*..‘v:'..’_'-',- - "?\ {‘{ \~.-. $‘ 't"\“’-."-._
LG SRCACOLN e .)' .
- ST Y t S

W e 4 Catds oialh Sund gea gh-I el Beegh gy

EREACNEALOER RS A S5AAN |

DATA ITEM DESCRIPTION [DENTIFICATION wOUD)
AGEWNCY NUNOER
T TITLR
Software Quality Evaluation Report USAF
3. OESCRIPTION PURPOSE T APPNOV AL OATE 1
The software quality evaluation report contains a quanti-
tative assessment of achieved software quality factor [T orres S ey |
levels for products released at incremental points during
the software development cycle. This report is used by
the Air Force to track quality levels and to assess com- [e ooc mcauinso
pliance with quality factor requirements in specificationg S
§. APPACVAL LINHTATION :‘._{1
7. APPLICATION/INTERREL ATIONSNIP ,(‘“-."::
The software quality evaluation report describes the re- k 9
sults of metric data collection and analyses. A report k.';;.:k]
is normally prepared near the end of each software devel- [SErsgwceiammdes <<=)
opment phase. Each report should contain metric data and : [
data analyses to address each software quality factor Sy
requirement specified in the system requirements spec- o
ification.]
.7. ‘.- 4
WC oL NUMAE e
b‘ ;:-;.;-:.,
L."_- 10. PREP ARATION INSTRUC TIONS :‘:\:i
::-'; 1. General Requirements. The software quality evaluation report shall describe :';-:.\-
R results of metric data collection and analyses. Data analyses information shall FJ‘
- N

include correlation of metric scores to factor scores for each software quality
factor requirement. Raw metric scores and factor scoring trends shall be included.

2. Detailed Requirements. For convenience in describing the minimum essential
content, the following paragraphs show a normal format for presentation of materi-

|

P-

= al. In the following description, paragraph headings and numbers indicate the

[-:. general nature of the topic and are minimum mandatory requirements.

) a. Section 1.0 - Introduction. This section shall describe the purpose

" and scope of the report.

y b. Section 2.0 - References. This section shall 1ist both government and
2 non-government references and shall include identification of system/software

", products used as source material for metric data collection.

c. Section 3.0 - Software Quality Evaluation Data. This section shall

o describe detailed results of metric data collection and analyses and shall identify
e variations from software quality requirements.

v (1) Paragraph 3.1 - Product Source Material. This paragraph shall de-
. scribe the software development phase and system/software products used as source
oy _material for collecting metric data.

_ DD ‘53’.‘“1664 §/N.0102-019-4000 P LATE w0, I94de onee] or_3 saens

WU.S COVERMNENT PRINTING GPPICE: 1091 T718.879/9089 8.4 o-es1?

Software Quality Evaluation Report

(2) Paragraph 3.2 - Requirement Allocation Relationships. This
paragraph shall identify and describe the derivation of relationships used
for scoring based on the allocation of quality factor requirements to soft-
ware elements (CSCIs and units). Formulas and 1ists should be used. For
example, Qsf1 « (Qf1 + Qf2 + ... + Qfn)/N, where:

Qsfl is the quality factor score for system-level function 1,
Qf1 is the quality factor score for software element 1,
Qf2 is the quality factor score for software element 2,

and Qfn is the quality factor score for software element n.

One formula is required for each software quality factor of each system-level .o
function for which software quality factor requirements have been specified. o
This paragraph shall also identify the specific retationships (criteria and .
metrics to factors) which were used to calculate software quality factor w——
scores. .

(3) Paragraph 3.3 - Data Collection. This section shall describe L
results of metric data collection and reduction and shall include descriptions RN

. i

of: {

(a) Selection and use of metric worksheets to collect metric CN

element data. oy
(b) Selection and use of metric scoresheets to compute

metric scores, criterion scores and factor scores. 1

(4) Paragraph 3.4 - Data Analyses. This section shall describe
results of metrics data analyses and shall include descriptions of:

(a) Computation of quality factor scores for each system-
level function.

(b) Comparison of metric scoring with specified quality
factor requirements (goals) and analyses of variations from requirements.
Causes and remedies shall be explored for each variation.

(¢) Trend analyses, showing software quality factor scoring
trends with respect to software develiopment phases.

(5) Paragraph 3.5 - Recommendations. This paragraph shall pro-
vide the following:

(a) Explanations and rationale for scoring variations.
(b) Recommendations for correcting scoring variations.

Page 2 of 3

LRSS T Y
PN IR
Sa e h W
e

I I AR) LRI -
N YR AL R RS 10 W W W

SN TN NN

=
73

oy
"]

A

] Ja'l
ASNYAS T

P ok s B

-

o

)
-

o
-«

LAY

Software Quality Evaluation Report

d. Appendix A - Summary Information. This section shall be included
as an appendgx'to the software quality evaluation report. It shall include
textual and pictorial material to elaborate and refine material presented in

section 3, Software Quality Evaluation Data. These items shall include tabu-
lar representations of:

(1) Software quality factor requirements allocation to software
elements.

(2) A comparison of software quality factor scoring with speci-
fied requirements.

(3) Quality Criteria scoring for each factor.

(4) Quality Metric scoring for each criteria.

e. Appendix B - Factor Scoresheets. This section shall be included
as an appendix to the software quality evaluation report. It shall contain
the scoresheets with scores for all applicable factors, criteria, metrics,
and metric elements.

f. Appendix C - Metric Worksheets. This section shall be included
as an appendsx to the software quality evaluation report. [t shall contain
the metric worksheets with answers to all applicable wetric element questions.

R
.
Ay

3
ty Syt

v

VI' .I"?—',
v ay

’
r

B
¥
v

Page 3 of 3

C-4

w v Y VY

v T g

LS

e * -‘Y‘.- Y

d - - T T r—
it S AR A A g R A ‘o

— T
h ~ - PRt L,
iR R A Y T T P

MISSION
of
Rome Air Development Center

RADC plans and executes research, development, test and
selected acquisition proghams in Auppolbt of Command, Control
Communications and Intefligence {C31) activities. Technical
and engineening support within areas of technical competence
44 provided to ESD Program Offices (POs) and other ESD
elements. The principal technical mission areas are
communications, electromagnetic guidance and control, sur-
veillance of ground and aerospace objfects, wto&&cgence data
collection and handling, infonmation system technology,
Lonodpheric propagetion, solid state sciences, microwave
physics and electronic neaabM maintainability and
compatibility.

— T T T WY W Y T T w

- "4-~‘
- 1
']
e -3
~ e
™~
oo]
L—-J
. 0
..“":j
R
oo
L L
.0
[y -b'-’b.‘
R
‘: RN
O
- -
{\‘. '_\'
]
[t T T T e T T T T T
. ~-," . - - K i .~ K . R .'. -]
l.‘ B . . .- AT N R S AN ._-‘..
L*’;; ".L' AL PP UL S S AP ‘_44; ":: A PRSI SN S S PRSP, i PR _L__a__._x_g_A_.\, ISP AL P8

1 P
A
Ce e R
ot
VAPRaE '_AJ

I

o b . o PELANY
N . N [s :
SO S WUV S SR S W

]

1
b

-

SRS O
‘.

G
IR

SRR FPPEE

-~ S

"‘Y_'. AN AR ‘.1_*“‘ AAIS

>

4 & i a5 Soone . sagiih AR A
e . i e Y
L

T 7. T ._(J";‘!';TAV-'.IJJJ_L..----.'—-.-1
g A e A s VL A
.

